DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ethylene oligomerization in metal–organic frameworks bearing nickel(ii) 2,2'-bipyridine complexes

Abstract

Here, the metal–organic frameworks Zr6O4(OH)4(bpydc)6(1; bpydc2–= 2,2'-bipyridine-5,5'-dicarboxylate) and Zr6O4(OH)4(bpydc)0.84(bpdc)5.16(2; bpdc21458983 = biphenyl-4,4'-dicarboxylate) were readily metalated with Ni(DME)Br2(DME = dimethoxyethane) to produce the corresponding metalated frameworks1(NiBr2)6and2(NiBr2)0.84. Both nickel(ii)-containing frameworks catalyze the oligomerization of ethylene in the presence of Et2AlCl. In these systems, the pore environment around the active nickel sites significantly influences their selectivity for formation of oligomers over polymer. Specifically, the single-crystal structure of1(NiBr2)5.64reveals that surrounding metal–linker complexes enforce a steric environment on each nickel site that causes polymer formation to become favorable. Minimizing this steric congestion by isolating the nickel(ii) bipyridine complexes in the mixed-linker framework2(NiBr2)0.84markedly improves both the catalytic activity and selectivity for oligomers. Furthermore, both frameworks give product mixtures that are enriched in shorter olefins (C4–10), leading to deviations from the expected Schulz–Flory distribution of oligomers. Although these deviations indicate possible pore confinement effects on selectivity, control experiments using the nickel-treated biphenyl framework Zr6O4(OH)4(bpdc)6(NiBr2)0.14(3(NiBr2)0.14) reveal that they likely arise at least in part from the presence of nickel species that are not ligated by bipyridine within1(NiBr2)5.64and2(NiBr2)0.84.

Authors:
 [1];  [1]; ORCiD logo [2]
  1. Univ. of California, Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1458983
Grant/Contract Number:  
FG02-12ER16362; SC0008688
Resource Type:
Accepted Manuscript
Journal Name:
Faraday Discussions
Additional Journal Information:
Journal Volume: 201; Journal ID: ISSN 1359-6640
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Gonzalez, Miguel I., Oktawiec, Julia, and Long, Jeffrey R. Ethylene oligomerization in metal–organic frameworks bearing nickel(ii) 2,2'-bipyridine complexes. United States: N. p., 2017. Web. doi:10.1039/C7FD00061H.
Gonzalez, Miguel I., Oktawiec, Julia, & Long, Jeffrey R. Ethylene oligomerization in metal–organic frameworks bearing nickel(ii) 2,2'-bipyridine complexes. United States. https://doi.org/10.1039/C7FD00061H
Gonzalez, Miguel I., Oktawiec, Julia, and Long, Jeffrey R. Wed . "Ethylene oligomerization in metal–organic frameworks bearing nickel(ii) 2,2'-bipyridine complexes". United States. https://doi.org/10.1039/C7FD00061H. https://www.osti.gov/servlets/purl/1458983.
@article{osti_1458983,
title = {Ethylene oligomerization in metal–organic frameworks bearing nickel(ii) 2,2'-bipyridine complexes},
author = {Gonzalez, Miguel I. and Oktawiec, Julia and Long, Jeffrey R.},
abstractNote = {Here, the metal–organic frameworks Zr6O4(OH)4(bpydc)6(1; bpydc2–= 2,2'-bipyridine-5,5'-dicarboxylate) and Zr6O4(OH)4(bpydc)0.84(bpdc)5.16(2; bpdc21458983 = biphenyl-4,4'-dicarboxylate) were readily metalated with Ni(DME)Br2(DME = dimethoxyethane) to produce the corresponding metalated frameworks1(NiBr2)6and2(NiBr2)0.84. Both nickel(ii)-containing frameworks catalyze the oligomerization of ethylene in the presence of Et2AlCl. In these systems, the pore environment around the active nickel sites significantly influences their selectivity for formation of oligomers over polymer. Specifically, the single-crystal structure of1(NiBr2)5.64reveals that surrounding metal–linker complexes enforce a steric environment on each nickel site that causes polymer formation to become favorable. Minimizing this steric congestion by isolating the nickel(ii) bipyridine complexes in the mixed-linker framework2(NiBr2)0.84markedly improves both the catalytic activity and selectivity for oligomers. Furthermore, both frameworks give product mixtures that are enriched in shorter olefins (C4–10), leading to deviations from the expected Schulz–Flory distribution of oligomers. Although these deviations indicate possible pore confinement effects on selectivity, control experiments using the nickel-treated biphenyl framework Zr6O4(OH)4(bpdc)6(NiBr2)0.14(3(NiBr2)0.14) reveal that they likely arise at least in part from the presence of nickel species that are not ligated by bipyridine within1(NiBr2)5.64and2(NiBr2)0.84.},
doi = {10.1039/C7FD00061H},
journal = {Faraday Discussions},
number = ,
volume = 201,
place = {United States},
year = {Wed Feb 22 00:00:00 EST 2017},
month = {Wed Feb 22 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: A portion of the crystal structure of Zr6O4(OH)4(bpydc)6(NiBr2)5.64 at 100 K as determined by analysis of single crystal X-ray diffraction data; yellow, green, dark red, red, blue, and gray spheres represent Zr, Ni, Br, O, N, and C atoms, respectively. The NiII centers are disordered over two positionsmore » (Figure S1), but are represented here in only one orientation. Coordinated solvent molecules that complete the NiII coordination sphere could not be modeled due to disorder and weak scattering compared to the Br ligands. Hydrogen atoms are omitted for clarity.« less

Save / Share:

Works referenced in this record:

Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework
journal, February 2016

  • Li, Zhanyong; Schweitzer, Neil M.; League, Aaron B.
  • Journal of the American Chemical Society, Vol. 138, Issue 6
  • DOI: 10.1021/jacs.5b12515

Gas-Phase Dimerization of Ethylene under Mild Conditions Catalyzed by MOF Materials Containing (bpy)Ni II Complexes
journal, October 2015

  • Madrahimov, Sherzod T.; Gallagher, James R.; Zhang, Guanghui
  • ACS Catalysis, Vol. 5, Issue 11
  • DOI: 10.1021/acscatal.5b01604

Mechanism of Single-Site Molecule-Like Catalytic Ethylene Dimerization in Ni-MFU-4 l
journal, January 2017

  • Metzger, Eric D.; Comito, Robert J.; Hendon, Christopher H.
  • Journal of the American Chemical Society, Vol. 139, Issue 2
  • DOI: 10.1021/jacs.6b10300

Selective ethylene oligomerization: Recent advances in chromium catalysis and mechanistic investigations
journal, April 2011


Advances in selective ethylene trimerisation – a critical overview
journal, November 2004


Post-synthetic metalation of metal–organic frameworks
journal, January 2014

  • Evans, Jack D.; Sumby, Christopher J.; Doonan, Christian J.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00076E

Oligomerization of Ethylene to α-Olefins: Discovery and Development of the Shell Higher Olefin Process (SHOP)
journal, October 2013


Late-Metal Catalysts for Ethylene Homo- and Copolymerization
journal, April 2000

  • Ittel, Steven D.; Johnson, Lynda K.; Brookhart, Maurice
  • Chemical Reviews, Vol. 100, Issue 4
  • DOI: 10.1021/cr9804644

Selective Dimerization of Ethylene to 1-Butene with a Porous Catalyst
journal, February 2016


Preparation of Linear α-Olefins Using Cationic Nickel(II) α-Diimine Catalysts
journal, May 1997

  • Killian, Christopher M.; Johnson, Lynda K.; Brookhart, Maurice
  • Organometallics, Vol. 16, Issue 10
  • DOI: 10.1021/om961057q

Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron(II) sites
journal, May 2014

  • Xiao, Dianne J.; Bloch, Eric D.; Mason, Jarad A.
  • Nature Chemistry, Vol. 6, Issue 7
  • DOI: 10.1038/nchem.1956

Olefin Oligomerization via Metallacycles: Dimerization, Trimerization, Tetramerization, and Beyond
journal, March 2011


Toward “metalloMOFzymes”: Metal–Organic Frameworks with Single-Site Metal Catalysts for Small-Molecule Transformations
journal, May 2016


Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks
journal, October 2015

  • Yuan, Shuai; Chen, Ying-Pin; Qin, Junsheng
  • Angewandte Chemie, Vol. 127, Issue 49
  • DOI: 10.1002/ange.201505625

Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis
journal, May 2016


Homogeneous Catalysis: Mechanisms and Industrial Applications
book, February 2000


Proline Functionalized UiO-67 and UiO-68 Type Metal–Organic Frameworks Showing Reversed Diastereoselectivity in Aldol Addition Reactions
journal, April 2016


Nickel: An Element with Wide Application in Industrial Homogeneous Catalysis
journal, March 1990

  • Keim, Wilhelm
  • Angewandte Chemie International Edition in English, Vol. 29, Issue 3
  • DOI: 10.1002/anie.199002351

Catalytic Ethylene Dimerization and Oligomerization:  Recent Developments with Nickel Complexes Containing P , N-Chelating Ligands
journal, October 2005

  • Speiser, Fredy; Braunstein, Pierre; Saussine, Lucien
  • Accounts of Chemical Research, Vol. 38, Issue 10
  • DOI: 10.1021/ar050040d

Stereoselective Formation of Chiral Metallopeptides
journal, May 2012

  • Rama, Gustavo; Ardá, Ana; Maréchal, Jean-Didier
  • Chemistry - A European Journal, Vol. 18, Issue 23
  • DOI: 10.1002/chem.201201036

OLEX2 : a complete structure solution, refinement and analysis program
journal, January 2009

  • Dolomanov, Oleg V.; Bourhis, Luc J.; Gildea, Richard J.
  • Journal of Applied Crystallography, Vol. 42, Issue 2
  • DOI: 10.1107/S0021889808042726

Single-Crystal-to-Single-Crystal Metalation of a Metal–Organic Framework: A Route toward Structurally Well-Defined Catalysts
journal, February 2015


Definitive Molecular Level Characterization of Defects in UiO-66 Crystals
journal, August 2015

  • Trickett, Christopher A.; Gagnon, Kevin J.; Lee, Seungkyu
  • Angewandte Chemie International Edition, Vol. 54, Issue 38
  • DOI: 10.1002/anie.201505461

Bipyridine- and Phenanthroline-Based Metal–Organic Frameworks for Highly Efficient and Tandem Catalytic Organic Transformations via Directed C–H Activation
journal, February 2015

  • Manna, Kuntal; Zhang, Teng; Greene, Francis X.
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja512478y

New processes for the selective production of 1-octene
journal, July 2011

  • van Leeuwen, Piet W. N. M.; Clément, Nicolas D.; Tschan, Mathieu J. -L.
  • Coordination Chemistry Reviews, Vol. 255, Issue 13-14
  • DOI: 10.1016/j.ccr.2010.10.009

Iron-Based Catalysts with Exceptionally High Activities and Selectivities for Oligomerization of Ethylene to Linear α-Olefins
journal, July 1998

  • Small, Brooke L.; Brookhart, Maurice
  • Journal of the American Chemical Society, Vol. 120, Issue 28
  • DOI: 10.1021/ja981317q

Postsynthetic Metalation of Bipyridyl-Containing Metal–Organic Frameworks for Highly Efficient Catalytic Organic Transformations
journal, April 2014

  • Manna, Kuntal; Zhang, Teng; Lin, Wenbin
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja5018267

Ethylene Oligomerization and Propylene Dimerization Using Cationic (α-Diimine)nickel(II) Catalysts
journal, January 1999

  • Svejda, Steven A.; Brookhart, Maurice
  • Organometallics, Vol. 18, Issue 1
  • DOI: 10.1021/om980736t

Cyclometalated metal–organic frameworks as stable and reusable heterogeneous catalysts for allylic N-alkylation of amines
journal, January 2013

  • Dau, Phuong V.; Cohen, Seth M.
  • Chemical Communications, Vol. 49, Issue 55
  • DOI: 10.1039/c3cc42119h

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Processes for the production of higher linear α-olefins
journal, July 2010


Metal–Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations
journal, February 2016

  • Zhang, Teng; Manna, Kuntal; Lin, Wenbin
  • Journal of the American Chemical Society, Vol. 138, Issue 9
  • DOI: 10.1021/jacs.6b00849

Organometallic nickel catalysts anchored on polymeric matrices in the oligomerization and/or polymerization of olefins. Part II. Effect and role of the components of the catalytic system
journal, March 1995

  • Braca, G.; Raspolli Galletti, A. M.; Di Girolamo, M.
  • Journal of Molecular Catalysis A: Chemical, Vol. 96, Issue 3
  • DOI: 10.1016/1381-1169(94)00052-2

High gas storage capacities and stepwise adsorption in a UiO type metal–organic framework incorporating Lewis basic bipyridyl sites
journal, January 2014

  • Li, Liangjun; Tang, Sifu; Wang, Chao
  • Chemical Communications, Vol. 50, Issue 18
  • DOI: 10.1039/c3cc48275h

Ethylene Oligomerization beyond Schulz–Flory Distributions
journal, October 2015

  • Britovsek, George J. P.; Malinowski, Robert; McGuinness, David S.
  • ACS Catalysis, Vol. 5, Issue 11
  • DOI: 10.1021/acscatal.5b02203

New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins
journal, June 1995

  • Johnson, Lynda K.; Killian, Christopher M.; Brookhart, Maurice
  • Journal of the American Chemical Society, Vol. 117, Issue 23
  • DOI: 10.1021/ja00128a054

Four-coordinated bipyridine complexes of nickel for ethene polymerization—the role of ligand structure
journal, November 2000

  • Kinnunen, Toni-J. J.; Haukka, Matti; Pakkanen, Tuula T.
  • Journal of Organometallic Chemistry, Vol. 613, Issue 2
  • DOI: 10.1016/S0022-328X(00)00618-5

Computational Study of the Effect of Confinement within Microporous Structures on the Activity and Selectivity of Metallocene Catalysts for Ethylene Oligomerization
journal, March 2011

  • Toulhoat, Hervé; Lontsi Fomena, Mireille; de Bruin, Theodorus
  • Journal of the American Chemical Society, Vol. 133, Issue 8
  • DOI: 10.1021/ja105950z

Pore Environment Effects on Catalytic Cyclohexane Oxidation in Expanded Fe 2 (dobdc) Analogues
journal, October 2016

  • Xiao, Dianne J.; Oktawiec, Julia; Milner, Phillip J.
  • Journal of the American Chemical Society, Vol. 138, Issue 43
  • DOI: 10.1021/jacs.6b08417

The influence of halogen substituents at the ligand framework of (α-diimine)nickel(II) catalyst precursors on their behavior in ethylene oligomerization and polymerization
journal, April 2003

  • Helldörfer, Markus; Milius, Wolfgang; Alt, Helmut G.
  • Journal of Molecular Catalysis A: Chemical, Vol. 197, Issue 1-2
  • DOI: 10.1016/S1381-1169(02)00519-8

Salicylaldimine-Based Metal–Organic Framework Enabling Highly Active Olefin Hydrogenation with Iron and Cobalt Catalysts
journal, September 2014

  • Manna, Kuntal; Zhang, Teng; Carboni, Michaël
  • Journal of the American Chemical Society, Vol. 136, Issue 38
  • DOI: 10.1021/ja507947d

A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability
journal, October 2008

  • Cavka, Jasmina Hafizovic; Jakobsen, Søren; Olsbye, Unni
  • Journal of the American Chemical Society, Vol. 130, Issue 42, p. 13850-13851
  • DOI: 10.1021/ja8057953

Photocatalytic CO 2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal–Organic Framework
journal, July 2015


Metal–Organic Framework Nodes Support Single-Site Magnesium–Alkyl Catalysts for Hydroboration and Hydroamination Reactions
journal, June 2016

  • Manna, Kuntal; Ji, Pengfei; Greene, Francis X.
  • Journal of the American Chemical Society, Vol. 138, Issue 24
  • DOI: 10.1021/jacs.6b03689

Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66
journal, July 2014

  • Shearer, Greig C.; Chavan, Sachin; Ethiraj, Jayashree
  • Chemistry of Materials, Vol. 26, Issue 14
  • DOI: 10.1021/cm501859p

Single-crystal structure validation with the program PLATON
journal, January 2003


MOF-Supported Selective Ethylene Dimerization Single-Site Catalysts through One-Pot Postsynthetic Modification
journal, March 2013

  • Canivet, Jerome; Aguado, Sonia; Schuurman, Yves
  • Journal of the American Chemical Society, Vol. 135, Issue 11
  • DOI: 10.1021/ja312120x

Postsynthetic modification of mixed-linker metal–organic frameworks for ethylene oligomerization
journal, January 2014


Selective Propene Oligomerization with Nickel(II)-Based Metal–Organic Frameworks
journal, January 2014

  • Mlinar, Anton N.; Keitz, Benjamin K.; Gygi, David
  • ACS Catalysis, Vol. 4, Issue 3
  • DOI: 10.1021/cs401189a

Nickel-based solid catalysts for ethylene oligomerization – a review
journal, January 2014

  • Finiels, Annie; Fajula, François; Hulea, Vasile
  • Catal. Sci. Technol., Vol. 4, Issue 8
  • DOI: 10.1039/C4CY00305E

Indexing of powder diffraction patterns by iterative use of singular value decomposition
journal, January 2003


Striking different behavior in the activation of α-olefins by homogeneous and heterogenized catalysts based on η5-cyclopentadienyl nickel derivatives
journal, September 1996

  • Raspolli Galletti, A. M.; Geri, G.; Sbrana, G.
  • Journal of Molecular Catalysis A: Chemical, Vol. 111, Issue 3
  • DOI: 10.1016/1381-1169(96)00199-9

Oligomerization of Monoolefins by Homogeneous Catalysts
journal, September 2009

  • Forestière, A.; Olivier-Bourbigou, H.; Saussine, L.
  • Oil & Gas Science and Technology - Revue de l'IFP, Vol. 64, Issue 6
  • DOI: 10.2516/ogst/2009027

PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors
journal, January 2015

  • Spek, Anthony L.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 9-18
  • DOI: 10.1107/S2053229614024929

A robust, catalytic metal–organic framework with open 2,2′-bipyridine sites
journal, January 2014


Homogeneous Catalysis
book, January 2004


Definitive Molecular Level Characterization of Defects in UiO-66 Crystals
journal, August 2015

  • Trickett, Christopher A.; Gagnon, Kevin J.; Lee, Seungkyu
  • Angewandte Chemie, Vol. 127, Issue 38
  • DOI: 10.1002/ange.201505461

Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks
journal, October 2015

  • Yuan, Shuai; Chen, Ying-Pin; Qin, Junsheng
  • Angewandte Chemie International Edition, Vol. 54, Issue 49
  • DOI: 10.1002/anie.201505625

Homogeneous Catalysis
book, January 2007

  • Garbaccio, R. M.; Wolkenberg, S. E.
  • Three Carbon-Heteroatom Bonds: Acid Halides; Carboxylic Acids and Acid Salts
  • DOI: 10.1055/sos-sd-020-01076

Homogeneous Catalysis
book, January 2014


Catalytic Ethylene Dimerization and Oligomerization: Recent Developments with Nickel Complexes Containing P,N-Chelating Ligands
journal, February 2006

  • Speiser, Fredy; Braunstein, Pierre; Saussine, Lucien
  • ChemInform, Vol. 37, Issue 7
  • DOI: 10.1002/chin.200607262

Homogeneous Catalysis: Mechanisms and Industrial Applications
journal, September 2014


Works referencing / citing this record:

Microporous Polymers as Macroligands for Pentamethylcyclopentadienylrhodium Transfer-Hydrogenation Catalysts
journal, February 2018

  • Wisser, Florian M.; Mohr, Yorck; Quadrelli, Elsje Alessandra
  • ChemCatChem, Vol. 10, Issue 8
  • DOI: 10.1002/cctc.201701836

Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts
journal, May 2019

  • Agirrezabal-Telleria, Iker; Luz, Ignacio; Ortuño, Manuel A.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-10013-6

Operando study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons
journal, January 2018

  • Bugaev, A. L.; Guda, Alexander A.; Lomachenko, Kirill A.
  • Faraday Discussions, Vol. 208
  • DOI: 10.1039/c7fd00224f

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.