skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Defining the Proton Topology of the Zr6 -Based Metal–Organic Framework NU-1000

Abstract

Metal–organic frameworks (MOFs) constructed from Zr6-based nodes have recently received considerable attention given their exceptional thermal, chemical, and mechanical stability. Because of this, the structural diversity of Zr6-based MOFs has expanded considerably and in turn given rise to difficulty in their precise characterization. In particular it has been difficult to assign precisely where protons (needed for charge balance) reside on some Zr6-based nodes. Elucidating the precise proton topologies in Zr6-based MOFs will have wide ranging implications in defining their chemical reactivity, acid/base characteristics, conductivity and chemical catalysis. Here we have used a combined quantum mechanical and experimental approach to elucidate the precise proton topology of the Zr6-based framework NU-1000. Lastly, our data indicate that a mixed node topology, [Zr63–O)43-OH)4(OH)4(OH2)4]8+, is preferred and simultaneously rules out five alternative node topologies.

Authors:
 [1];  [2];  [1];  [1];  [1];  [2];  [3];  [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States)
  2. Northwestern Univ., Evanston, IL (United States)
  3. Northwestern Univ., Evanston, IL (United States); King Abdulaziz Univ., Jeddah (Saudi Arabia)
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1458981
Grant/Contract Number:  
FG02-12ER16362; SC0008688
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 5; Journal Issue: 21; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; node topology; density functional theory; IR spectroscopy; tautomerism

Citation Formats

Planas, Nora, Mondloch, Joseph E., Tussupbayev, Samat, Borycz, Joshua, Gagliardi, Laura, Hupp, Joseph T., Farha, Omar K., and Cramer, Christopher J.. Defining the Proton Topology of the Zr6 -Based Metal–Organic Framework NU-1000. United States: N. p., 2014. Web. https://doi.org/10.1021/jz501899j.
Planas, Nora, Mondloch, Joseph E., Tussupbayev, Samat, Borycz, Joshua, Gagliardi, Laura, Hupp, Joseph T., Farha, Omar K., & Cramer, Christopher J.. Defining the Proton Topology of the Zr6 -Based Metal–Organic Framework NU-1000. United States. https://doi.org/10.1021/jz501899j
Planas, Nora, Mondloch, Joseph E., Tussupbayev, Samat, Borycz, Joshua, Gagliardi, Laura, Hupp, Joseph T., Farha, Omar K., and Cramer, Christopher J.. Fri . "Defining the Proton Topology of the Zr6 -Based Metal–Organic Framework NU-1000". United States. https://doi.org/10.1021/jz501899j. https://www.osti.gov/servlets/purl/1458981.
@article{osti_1458981,
title = {Defining the Proton Topology of the Zr6 -Based Metal–Organic Framework NU-1000},
author = {Planas, Nora and Mondloch, Joseph E. and Tussupbayev, Samat and Borycz, Joshua and Gagliardi, Laura and Hupp, Joseph T. and Farha, Omar K. and Cramer, Christopher J.},
abstractNote = {Metal–organic frameworks (MOFs) constructed from Zr6-based nodes have recently received considerable attention given their exceptional thermal, chemical, and mechanical stability. Because of this, the structural diversity of Zr6-based MOFs has expanded considerably and in turn given rise to difficulty in their precise characterization. In particular it has been difficult to assign precisely where protons (needed for charge balance) reside on some Zr6-based nodes. Elucidating the precise proton topologies in Zr6-based MOFs will have wide ranging implications in defining their chemical reactivity, acid/base characteristics, conductivity and chemical catalysis. Here we have used a combined quantum mechanical and experimental approach to elucidate the precise proton topology of the Zr6-based framework NU-1000. Lastly, our data indicate that a mixed node topology, [Zr6(μ3–O)4(μ3-OH)4(OH)4(OH2)4]8+, is preferred and simultaneously rules out five alternative node topologies.},
doi = {10.1021/jz501899j},
journal = {Journal of Physical Chemistry Letters},
number = 21,
volume = 5,
place = {United States},
year = {2014},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 118 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hybrid porous solids past, present, future
journal, January 2008

  • Férey, Gérard
  • Chem. Soc. Rev., Vol. 37, Issue 1, p. 191-214
  • DOI: 10.1039/B618320B

Soft porous crystals
journal, November 2009

  • Horike, Satoshi; Shimomura, Satoru; Kitagawa, Susumu
  • Nature Chemistry, Vol. 1, Issue 9, p. 695-704
  • DOI: 10.1038/nchem.444

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Catalysis by a Zinc-Porphyrin-Based Metal–Organic Framework: From Theory to Computational Design
journal, October 2012

  • Roy, Sharani; George, Christopher B.; Ratner, Mark A.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 44
  • DOI: 10.1021/jp308496g

The Mechanism of Carbon Dioxide Adsorption in an Alkylamine-Functionalized Metal–Organic Framework
journal, April 2013

  • Planas, Nora; Dzubak, Allison L.; Poloni, Roberta
  • Journal of the American Chemical Society, Vol. 135, Issue 20, p. 7402-7405
  • DOI: 10.1021/ja4004766

Elucidating steric effects on enantioselective epoxidation catalyzed by (salen)Mn in metal-organic frameworks
journal, January 2011

  • Oxford, Gloria A. E.; Dubbeldam, David; Broadbelt, Linda J.
  • Journal of Molecular Catalysis A: Chemical, Vol. 334, Issue 1-2
  • DOI: 10.1016/j.molcata.2010.11.001

De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities
journal, September 2010

  • Farha, Omar K.; Özgür Yazaydın, A.; Eryazici, Ibrahim
  • Nature Chemistry, Vol. 2, Issue 11, p. 944-948
  • DOI: 10.1038/nchem.834

Large-scale screening of hypothetical metal–organic frameworks
journal, November 2011

  • Wilmer, Christopher E.; Leaf, Michael; Lee, Chang Yeon
  • Nature Chemistry, Vol. 4, Issue 2, p. 83-89
  • DOI: 10.1038/nchem.1192

A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability
journal, October 2008

  • Cavka, Jasmina Hafizovic; Jakobsen, Søren; Olsbye, Unni
  • Journal of the American Chemical Society, Vol. 130, Issue 42, p. 13850-13851
  • DOI: 10.1021/ja8057953

Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal–Organic Frameworks
journal, June 2012

  • Morris, William; Volosskiy, Boris; Demir, Selcuk
  • Inorganic Chemistry, Vol. 51, Issue 12, p. 6443-6445
  • DOI: 10.1021/ic300825s

Water Adsorption in Porous Metal–Organic Frameworks and Related Materials
journal, March 2014

  • Furukawa, Hiroyasu; Gándara, Felipe; Zhang, Yue-Biao
  • Journal of the American Chemical Society, Vol. 136, Issue 11, p. 4369-4381
  • DOI: 10.1021/ja500330a

An Exceptionally Stable, Porphyrinic Zr Metal–Organic Framework Exhibiting pH-Dependent Fluorescence
journal, September 2013

  • Jiang, Hai-Long; Feng, Dawei; Wang, Kecheng
  • Journal of the American Chemical Society, Vol. 135, Issue 37
  • DOI: 10.1021/ja406844r

Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption
journal, May 2013

  • Wu, Hui; Chua, Yong Shen; Krungleviciute, Vaiva
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404514r

H 2 storage in isostructural UiO-67 and UiO-66 MOFs
journal, January 2012

  • Chavan, Sachin; Vitillo, Jenny G.; Gianolio, Diego
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 5
  • DOI: 10.1039/C1CP23434J

CH4 storage and CO2 capture in highly porous zirconium oxide based metal–organic frameworks
journal, January 2012

  • Yang, Qingyuan; Guillerm, Vincent; Ragon, Florence
  • Chemical Communications, Vol. 48, Issue 79, p. 9831-9833
  • DOI: 10.1039/c2cc34714h

Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks
journal, April 2012

  • Vermoortele, Frederik; Vandichel, Matthias; Van de Voorde, Ben
  • Angewandte Chemie International Edition, Vol. 51, Issue 20
  • DOI: 10.1002/anie.201108565

A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of metal–organic framework UiO-67
journal, January 2013

  • Siu, Paul W.; Brown, Zachary J.; Farha, Omar K.
  • Chemical Communications, Vol. 49, Issue 93
  • DOI: 10.1039/c3cc47177b

Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr)
journal, July 2013

  • Vermoortele, Frederik; Bueken, Bart; Le Bars, Gaëlle
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja405078u

Simple and Compelling Biomimetic Metal-Organic Framework Catalyst for the Degradation of Nerve Agent Simulants
journal, November 2013

  • Katz, Michael J.; Mondloch, Joseph E.; Totten, Ryan K.
  • Angewandte Chemie International Edition, Vol. 53, Issue 2, p. 497-501
  • DOI: 10.1002/anie.201307520

Highly porous and stable metal–organic frameworks for uranium extraction
journal, January 2013

  • Carboni, Michaël; Abney, Carter W.; Liu, Shubin
  • Chemical Science, Vol. 4, Issue 6, p. 2396-2402
  • DOI: 10.1039/c3sc50230a

Effective Mercury Sorption by Thiol-Laced Metal–Organic Frameworks: in Strong Acid and the Vapor Phase
journal, May 2013

  • Yee, Ka-Kit; Reimer, Nele; Liu, Jie
  • Journal of the American Chemical Society, Vol. 135, Issue 21
  • DOI: 10.1021/ja400212k

Ionic Conductivity in the Metal-Organic Framework UiO-66 by Dehydration and Insertion of Lithium tert -Butoxide
journal, March 2013

  • Ameloot, Rob; Aubrey, Michael; Wiers, Brian M.
  • Chemistry - A European Journal, Vol. 19, Issue 18
  • DOI: 10.1002/chem.201300326

Integration of accessible secondary metal sites into MOFs for H 2 S removal
journal, January 2014

  • Nickerl, Georg; Leistner, Matthias; Helten, Stella
  • Inorg. Chem. Front., Vol. 1, Issue 4
  • DOI: 10.1039/C3QI00093A

Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts
journal, August 2012

  • Feng, Dawei; Gu, Zhi-Yuan; Li, Jian-Rong
  • Angewandte Chemie International Edition, Vol. 51, Issue 41
  • DOI: 10.1002/anie.201204475

Biomimetic Catalysis of a Porous Iron-Based Metal–Metalloporphyrin Framework
journal, November 2012

  • Chen, Yao; Hoang, Tran; Ma, Shengqian
  • Inorganic Chemistry, Vol. 51, Issue 23
  • DOI: 10.1021/ic301923x

Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies
journal, October 2013

  • Deria, Pravas; Mondloch, Joseph E.; Tylianakis, Emmanuel
  • Journal of the American Chemical Society, Vol. 135, Issue 45, p. 16801-16804
  • DOI: 10.1021/ja408959g

Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation
journal, January 2014

  • Deria, Pravas; Bury, Wojciech; Hupp, Joseph T.
  • Chemical Communications, Vol. 50, Issue 16, p. 1965-1968
  • DOI: 10.1039/c3cc48562e

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Accurate and simple analytic representation of the electron-gas correlation energy
journal, June 1992


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Rationale for mixing exact exchange with density functional approximations
journal, December 1996

  • Perdew, John P.; Ernzerhof, Matthias; Burke, Kieron
  • The Journal of Chemical Physics, Vol. 105, Issue 22, p. 9982-9985
  • DOI: 10.1063/1.472933

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe
journal, February 2001

  • Martin, Jan M. L.; Sundermann, Andreas
  • The Journal of Chemical Physics, Vol. 114, Issue 8
  • DOI: 10.1063/1.1337864

Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases
journal, February 2012

  • Marenich, Aleksandr V.; Jerome, Steven V.; Cramer, Christopher J.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 2, p. 527-541
  • DOI: 10.1021/ct200866d

Computational exploration of newly synthesized zirconium metal–organic frameworks UiO-66, -67, -68 and analogues
journal, January 2014

  • Yang, Li-Ming; Ganz, Eric; Svelle, Stian
  • J. Mater. Chem. C, Vol. 2, Issue 34
  • DOI: 10.1039/C4TC00902A

Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory
journal, April 2011

  • Valenzano, Loredana; Civalleri, Bartolomeo; Chavan, Sachin
  • Chemistry of Materials, Vol. 23, Issue 7, p. 1700-1718
  • DOI: 10.1021/cm1022882

    Works referencing / citing this record:

    Dynamic acidity in defective UiO-66
    journal, January 2016


    A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution
    journal, September 2015

    • Hod, Idan; Deria, Pravas; Bury, Wojciech
    • Nature Communications, Vol. 6, Issue 1
    • DOI: 10.1038/ncomms9304

    The effects of active site and support on hydrogen elimination over transition-metal-functionalized yttria-decorated metal–organic frameworks
    journal, January 2019

    • Yang, Bo; Sharkas, Kamal; Gagliardi, Laura
    • Catalysis Science & Technology, Vol. 9, Issue 24
    • DOI: 10.1039/c9cy01069f

    Secondary building units as the turning point in the development of the reticular chemistry of MOFs
    journal, October 2018

    • Kalmutzki, Markus J.; Hanikel, Nikita; Yaghi, Omar M.
    • Science Advances, Vol. 4, Issue 10
    • DOI: 10.1126/sciadv.aat9180

    Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports
    journal, January 2017

    • Desai, Sai Puneet; Malonzo, Camille D.; Webber, Thomas
    • Faraday Discussions, Vol. 201
    • DOI: 10.1039/c7fd00055c

    Non-3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media
    journal, December 2018


    Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000
    journal, January 2017

    • Platero-Prats, Ana E.; Li, Zhanyong; Gallington, Leighanne C.
    • Faraday Discussions, Vol. 201
    • DOI: 10.1039/c7fd00110j

    Modulator-Controlled Synthesis of Microporous STA-26, an Interpenetrated 8,3-Connected Zirconium MOF with the the-i Topology, and its Reversible Lattice Shift
    journal, March 2018

    • Bumstead, Alice M.; Cordes, David B.; Dawson, Daniel M.
    • Chemistry - A European Journal, Vol. 24, Issue 23
    • DOI: 10.1002/chem.201705136

    Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000
    journal, December 2015

    • Wang, Timothy C.; Vermeulen, Nicolaas A.; Kim, In Soo
    • Nature Protocols, Vol. 11, Issue 1
    • DOI: 10.1038/nprot.2016.001

    MOFs vs. zeolites: carbonyl activation with M( iv ) catalytic sites
    journal, January 2017

    • Cirujano, Francisco G.
    • Catalysis Science & Technology, Vol. 7, Issue 23
    • DOI: 10.1039/c7cy01811h

    Synthesis and proton conductivity of two novel molybdate polymers
    journal, January 2018

    • Xu, Li; Wang, Zhifang; Lu, Ying
    • New Journal of Chemistry, Vol. 42, Issue 20
    • DOI: 10.1039/c8nj03781g

    Non-3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media
    journal, December 2018

    • Xu, Yan-Tong; Ye, Zi-Ming; Ye, Jia-Wen
    • Angewandte Chemie International Edition, Vol. 58, Issue 1
    • DOI: 10.1002/anie.201809144

    Water-stable 2-D Zr MOFs with exceptional UO 2 2+ sorption capability
    journal, January 2020

    • Panagiotou, Nikos; Liatsou, Ioanna; Pournara, Anastasia
    • Journal of Materials Chemistry A, Vol. 8, Issue 4
    • DOI: 10.1039/c9ta10701k

    Electronic effects due to organic linker-metal surface interactions: implications on screening of MOF-encapsulated catalysts
    journal, January 2020

    • Schweitzer, Benjamin; Archuleta, Chloe; Seong, Bomsaerah
    • Physical Chemistry Chemical Physics, Vol. 22, Issue 4
    • DOI: 10.1039/c9cp05380h

    Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks
    journal, October 2015

    • Yuan, Shuai; Chen, Ying-Pin; Qin, Junsheng
    • Angewandte Chemie, Vol. 127, Issue 49
    • DOI: 10.1002/ange.201505625

    Defect engineering of UiO-66 for CO 2 and H 2 O uptake – a combined experimental and simulation study
    journal, January 2016

    • Liang, Weibin; Coghlan, Campbell J.; Ragon, Florence
    • Dalton Transactions, Vol. 45, Issue 11
    • DOI: 10.1039/c6dt00189k

    A metal–organic framework immobilised iridium pincer complex
    journal, January 2016

    • Rimoldi, Martino; Nakamura, Akitake; Vermeulen, Nicolaas A.
    • Chemical Science, Vol. 7, Issue 8
    • DOI: 10.1039/c6sc01376g

    Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework
    journal, May 2015

    • Moon, Su-Young; Liu, Yangyang; Hupp, Joseph T.
    • Angewandte Chemie International Edition, Vol. 54, Issue 23
    • DOI: 10.1002/anie.201502155

    Destruction of chemical warfare agents using metal–organic frameworks
    journal, March 2015

    • Mondloch, Joseph E.; Katz, Michael J.; Isley III, William C.
    • Nature Materials, Vol. 14, Issue 5
    • DOI: 10.1038/nmat4238

    Single-site metal–organic framework catalysts for the oxidative coupling of arenes via C–H/C–H activation
    journal, January 2019

    • Van Velthoven, Niels; Waitschat, Steve; Chavan, Sachin M.
    • Chemical Science, Vol. 10, Issue 12
    • DOI: 10.1039/c8sc05510f

    Understanding the origins of metal–organic framework/polymer compatibility
    journal, January 2018

    • Semino, R.; Moreton, J. C.; Ramsahye, N. A.
    • Chemical Science, Vol. 9, Issue 2
    • DOI: 10.1039/c7sc04152g

    Enhancing catalytic alkane hydroxylation by tuning the outer coordination sphere in a heme-containing metal–organic framework
    journal, January 2020

    • Zee, David Z.; Harris, T. David
    • Chemical Science, Vol. 11, Issue 21
    • DOI: 10.1039/d0sc01796e

    Structural Engineering of Low‐Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications
    journal, April 2019


    Water stabilization of Zr 6 -based metal–organic frameworks via solvent-assisted ligand incorporation
    journal, January 2015

    • Deria, Pravas; Chung, Yongchul G.; Snurr, Randall Q.
    • Chemical Science, Vol. 6, Issue 9
    • DOI: 10.1039/c5sc01784j

    Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts
    journal, January 2018

    • Hakim Siddiki, S. M. A.; Toyao, Takashi; Shimizu, Ken-ichi
    • Green Chemistry, Vol. 20, Issue 13
    • DOI: 10.1039/c8gc00451j

    Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework
    journal, May 2015

    • Moon, Su-Young; Liu, Yangyang; Hupp, Joseph T.
    • Angewandte Chemie, Vol. 127, Issue 23
    • DOI: 10.1002/ange.201502155

    Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks
    journal, October 2015

    • Yuan, Shuai; Chen, Ying-Pin; Qin, Junsheng
    • Angewandte Chemie International Edition, Vol. 54, Issue 49
    • DOI: 10.1002/anie.201505625