skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strategies for Reducing the PGM Loading in High Power AEMFC Anodes

Abstract

Anion Exchange Membrane Fuel Cells (AEMFCs) have experienced a significant rise in attention in recent years, largely motivated by the potential to overcome the costs that have plateaued for proton exchange membrane fuel cells. However, despite significant advances in power generation, membrane conductivity, membrane stability, and catalyst activity, the vast majority of high performing AEMFCs are fabricated with a high PGM loading (0.4-0.8 mg cm -2). Our work demonstrates an electrode fabrication method that reduces the anode catalyst loading by 85% while still achieving performance ca. 1 W cm -2 - accomplished by designing a multi-layered electrode comprised of an optimized ionomer:carbon:PGM ratio catalyst layer coupled with a hydrophobic microporous layer. If paired with a high-performing PGM-free cathode, this new anode shows the potential to meet existing DOE PGM loading and performance targets.

Authors:
ORCiD logo; ; ; ; ; ; ORCiD logo
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); Engineering and Physical Sciences Research Council (EPSRC)
OSTI Identifier:
1458839
Alternate Identifier(s):
OSTI ID: 1461858
Report Number(s):
NREL/JA-5900-72002
Journal ID: ISSN 0013-4651; /jes/165/9/F710.atom
Grant/Contract Number:  
AC36-08GO28308; SC0010531; EP/M014371/1
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 165 Journal Issue: 9; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; anion exchange membrane fuel cell; electrode engineering; low PGM

Citation Formats

Omasta, Travis J., Zhang, Yufeng, Park, Andrew M., Peng, Xiong, Pivovar, Bryan, Varcoe, John R., and Mustain, William E. Strategies for Reducing the PGM Loading in High Power AEMFC Anodes. United States: N. p., 2018. Web. doi:10.1149/2.1401809jes.
Omasta, Travis J., Zhang, Yufeng, Park, Andrew M., Peng, Xiong, Pivovar, Bryan, Varcoe, John R., & Mustain, William E. Strategies for Reducing the PGM Loading in High Power AEMFC Anodes. United States. doi:10.1149/2.1401809jes.
Omasta, Travis J., Zhang, Yufeng, Park, Andrew M., Peng, Xiong, Pivovar, Bryan, Varcoe, John R., and Mustain, William E. Thu . "Strategies for Reducing the PGM Loading in High Power AEMFC Anodes". United States. doi:10.1149/2.1401809jes.
@article{osti_1458839,
title = {Strategies for Reducing the PGM Loading in High Power AEMFC Anodes},
author = {Omasta, Travis J. and Zhang, Yufeng and Park, Andrew M. and Peng, Xiong and Pivovar, Bryan and Varcoe, John R. and Mustain, William E.},
abstractNote = {Anion Exchange Membrane Fuel Cells (AEMFCs) have experienced a significant rise in attention in recent years, largely motivated by the potential to overcome the costs that have plateaued for proton exchange membrane fuel cells. However, despite significant advances in power generation, membrane conductivity, membrane stability, and catalyst activity, the vast majority of high performing AEMFCs are fabricated with a high PGM loading (0.4-0.8 mg cm-2). Our work demonstrates an electrode fabrication method that reduces the anode catalyst loading by 85% while still achieving performance ca. 1 W cm-2 - accomplished by designing a multi-layered electrode comprised of an optimized ionomer:carbon:PGM ratio catalyst layer coupled with a hydrophobic microporous layer. If paired with a high-performing PGM-free cathode, this new anode shows the potential to meet existing DOE PGM loading and performance targets.},
doi = {10.1149/2.1401809jes},
journal = {Journal of the Electrochemical Society},
number = 9,
volume = 165,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1149/2.1401809jes

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability
journal, January 2017

  • Wang, Lianqin; Brink, Jethro J.; Liu, Ye
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/C7EE02053H

Importance of balancing membrane and electrode water in anion exchange membrane fuel cells
journal, January 2018


Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect?
journal, January 2015

  • Wang, Ying; Wang, Gongwei; Li, Guangwei
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE02564D

Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes
journal, March 2017

  • Ledezma-Yanez, Isis; Wallace, W. David Z.; Sebastián-Pascual, Paula
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.31

Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells
journal, January 2014

  • Poynton, Simon D.; Slade, Robert C. T.; Omasta, Travis J.
  • J. Mater. Chem. A, Vol. 2, Issue 14
  • DOI: 10.1039/C4TA00558A

Review of cell performance in anion exchange membrane fuel cells
journal, January 2018


New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
journal, January 2014

  • Durst, J.; Siebel, A.; Simon, C.
  • Energy Environ. Sci., Vol. 7, Issue 7
  • DOI: 10.1039/C4EE00440J

Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction
journal, May 2013

  • Chung, Hoon T.; Won, Jong H.; Zelenay, Piotr
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2944

An optimised synthesis of high performance radiation-grafted anion-exchange membranes
journal, January 2017

  • Wang, Lianqin; Magliocca, Emanuele; Cunningham, Emma L.
  • Green Chemistry, Vol. 19, Issue 3
  • DOI: 10.1039/C6GC02526A

Dependence of PEM fuel cell performance on catalyst loading
journal, March 2004


Direct synthesis of platinum group metal-free Fe-N-C catalyst for oxygen reduction reaction in alkaline media
journal, November 2016


Varying the microphase separation patterns of alkaline polymer electrolytes
journal, January 2016

  • Chen, Chen; Pan, Jing; Han, Juanjuan
  • Journal of Materials Chemistry A, Vol. 4, Issue 11
  • DOI: 10.1039/C5TA09438K

High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes
journal, January 2016

  • Ponce-González, Julia; Whelligan, Daniel K.; Wang, Lianqin
  • Energy & Environmental Science, Vol. 9, Issue 12
  • DOI: 10.1039/C6EE01958G

Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs
journal, January 2018

  • Omasta, Travis J.; Park, Andrew M.; LaManna, Jacob M.
  • Energy & Environmental Science, Vol. 11, Issue 3
  • DOI: 10.1039/C8EE00122G

Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane
journal, January 2015

  • Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 6
  • DOI: 10.1039/C4CP05755D

Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell
journal, February 2016


Synthesis and Characterization of Perfluorinated Anion Exchange Membranes
journal, August 2017

  • Park, Andrew Michael; Owczarczyk, Zbyslaw R.; Garner, L. E.
  • ECS Transactions, Vol. 80, Issue 8
  • DOI: 10.1149/08008.0957ecst

Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte
journal, January 2016

  • Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10141

Anion-exchange membranes in electrochemical energy systems
journal, January 2014

  • Varcoe, John R.; Atanassov, Plamen; Dekel, Dario R.
  • Energy & Environmental Science, Vol. 7, Issue 10, p. 3135-3191
  • DOI: 10.1039/C4EE01303D

Highly active nanostructured palladium-ceria electrocatalysts for the hydrogen oxidation reaction in alkaline medium
journal, March 2017


The first anion-exchange membrane fuel cell to exceed 1 W cm −2 at 70 °C with a non-Pt-group (O 2 ) cathode
journal, January 2017

  • Wang, Lianqin; Brink, Jethro J.; Varcoe, John R.
  • Chem. Commun., Vol. 53, Issue 86
  • DOI: 10.1039/C7CC06392J

A Highly Hydroxide Conductive, Chemically Stable Anion Exchange Membrane, Poly(2,6 dimethyl 1,4 phenylene oxide)- b -Poly(vinyl benzyl trimethyl ammonium), for Electrochemical Applications
journal, January 2016

  • Pandey, Tara P.; Sarode, Himanshu N.; Yang, Yating
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0421607jes

Anion exchange membrane fuel cells: Current status and remaining challenges
journal, January 2018


Study on the effect of the degree of grafting on the performance of polyethylene-based anion exchange membrane for fuel cell application
journal, January 2016


An efficient Ag–ionomer interface for hydroxide exchange membrane fuel cells
journal, January 2013

  • Gu, Shuang; Sheng, Wenchao; Cai, Rui
  • Chem. Commun., Vol. 49, Issue 2
  • DOI: 10.1039/C2CC34862D

Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells
journal, December 2016

  • Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.
  • Nature Nanotechnology, Vol. 11, Issue 12
  • DOI: 10.1038/nnano.2016.265

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells
journal, September 2017


Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts
journal, December 2008

  • Lu, S.; Pan, J.; Huang, A.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 52, p. 20611-20614
  • DOI: 10.1073/pnas.0810041106

    Works referencing / citing this record:

    Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability
    journal, May 2019


    Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability
    journal, May 2019