DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas

Abstract

In ignition scale hot plasmas, temperature gradients and thermal transport modify electron distributions in a velocity range resonant with Langmuir waves typical of those produced by stimulated Raman scattering. We examine the resultant changes to the Landau damping experienced by these Langmuir waves and the levels of thermal plasma fluctuations. The form factor and Thomson scattering cross-section in such plasmas display unique characteristics of the background conditions. A theoretical model and high-order Vlasov-Fokker-Planck simulations are used in our analysis. As a result, an experiment to measure changes in thermal plasma fluctuation levels due to a thermal gradient is proposed.

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [4];  [2];  [5]; ORCiD logo [3];  [4]; ORCiD logo [4];  [6]
  1. Univ. of Alberta, Edmonton, AB (Canada)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Russian Academy of Sciences, Moscow (Russia); VNIIA, ROSATOM, Moscow (Russia)
  4. UCLA, Los Angeles, CA (United States)
  5. Assoc. EURATOM-Confederation Suisse, Lausanne (Switzerland)
  6. LCLS, Stanford, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1458713
Alternate Identifier(s):
OSTI ID: 1421116
Report Number(s):
LLNL-JRNL-734912
Journal ID: ISSN 1070-664X; 885747; TRN: US1901514
Grant/Contract Number:  
AC52-07NA27344; FC02-04ER54789; NA0001833
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 1; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Rozmus, W., Chapman, T., Brantov, A., Winjum, B. J., Berger, R. L., Brunner, S., Bychenkov, V. Yu., Tableman, A., Tzoufras, M., and Glenzer, S. Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas. United States: N. p., 2016. Web. doi:10.1063/1.4939603.
Rozmus, W., Chapman, T., Brantov, A., Winjum, B. J., Berger, R. L., Brunner, S., Bychenkov, V. Yu., Tableman, A., Tzoufras, M., & Glenzer, S. Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas. United States. https://doi.org/10.1063/1.4939603
Rozmus, W., Chapman, T., Brantov, A., Winjum, B. J., Berger, R. L., Brunner, S., Bychenkov, V. Yu., Tableman, A., Tzoufras, M., and Glenzer, S. Fri . "Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas". United States. https://doi.org/10.1063/1.4939603. https://www.osti.gov/servlets/purl/1458713.
@article{osti_1458713,
title = {Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas},
author = {Rozmus, W. and Chapman, T. and Brantov, A. and Winjum, B. J. and Berger, R. L. and Brunner, S. and Bychenkov, V. Yu. and Tableman, A. and Tzoufras, M. and Glenzer, S.},
abstractNote = {In ignition scale hot plasmas, temperature gradients and thermal transport modify electron distributions in a velocity range resonant with Langmuir waves typical of those produced by stimulated Raman scattering. We examine the resultant changes to the Landau damping experienced by these Langmuir waves and the levels of thermal plasma fluctuations. The form factor and Thomson scattering cross-section in such plasmas display unique characteristics of the background conditions. A theoretical model and high-order Vlasov-Fokker-Planck simulations are used in our analysis. As a result, an experiment to measure changes in thermal plasma fluctuation levels due to a thermal gradient is proposed.},
doi = {10.1063/1.4939603},
journal = {Physics of Plasmas},
number = 1,
volume = 23,
place = {United States},
year = {Fri Jan 15 00:00:00 EST 2016},
month = {Fri Jan 15 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas
journal, August 2015

  • Del Sorbo, D.; Feugeas, J. -L.; Nicolaï, Ph.
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4926824

A Vlasov–Fokker–Planck code for high energy density physics
journal, July 2011

  • Tzoufras, M.; Bell, A. R.; Norreys, P. A.
  • Journal of Computational Physics, Vol. 230, Issue 17
  • DOI: 10.1016/j.jcp.2011.04.034

Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility
journal, May 2011

  • Hinkel, D. E.; Rosen, M. D.; Williams, E. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3577836

Ion acoustic instability driven by a temperature gradient in laser-produced plasmas
journal, August 2001

  • Brantov, A. V.; Bychenkov, V. Yu.; Rozmus, W.
  • Physics of Plasmas, Vol. 8, Issue 8
  • DOI: 10.1063/1.1379760

Shock Ignition of Thermonuclear Fuel with High Areal Density
journal, April 2007


Effect of Nonlocal Transport on Heat-Wave Propagation
journal, May 2004


Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments
journal, May 2009

  • Seka, W.; Edgell, D. H.; Myatt, J. F.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3125242

The Physics of Inertial Fusion
book, January 2004


Elecron Energy Transport in Steep Temperature Gradients in Laser-Produced Plasmas
journal, January 1981


Electron Heat Transport down Steep Temperature Gradients
journal, December 1982


Time-resolved observations of stimulated Raman scattering from laser-produced plasmas
journal, January 1983


Stimulated Raman scattering in large plasmas
journal, January 1982


Experimental studies of Raman scattering from foam targets using a 0.35 μm laser beam
journal, January 1987

  • Figueroa, H.; Joshi, C.; Clayton, C. E.
  • Physics of Fluids, Vol. 30, Issue 2
  • DOI: 10.1063/1.866357

Electron energy transport in ion waves and its relevance to laser-produced plasmas
journal, January 1983


Comparison for non-local hydrodynamic thermal conduction models
journal, February 2013

  • Marocchino, A.; Tzoufras, M.; Atzeni, S.
  • Physics of Plasmas, Vol. 20, Issue 2
  • DOI: 10.1063/1.4789878

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


Simulations of electron transport in laser hot spots
journal, March 2002


A multi-dimensional Vlasov-Fokker-Planck code for arbitrarily anisotropic high-energy-density plasmas
journal, May 2013

  • Tzoufras, M.; Tableman, A.; Tsung, F. S.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4801750

Return current instability in laser heated plasmas
journal, November 1995

  • Tikhonchuk, V. T.; Rozmus, W.; Bychenkov, V. Yu.
  • Physics of Plasmas, Vol. 2, Issue 11
  • DOI: 10.1063/1.871041

Transport Phenomena in a Completely Ionized Gas
journal, March 1953


Angular moment model for the Fokker-Planck equation
journal, July 2010


Nonlocal electron transport in laser heated plasmas
journal, July 1998

  • Brantov, A. V.; Bychenkov, V. Yu.; Tikhonchuk, V. T.
  • Physics of Plasmas, Vol. 5, Issue 7
  • DOI: 10.1063/1.872962

Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions
journal, July 2015


Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas
journal, July 2013


Principles of Plasma Electrodynamics
book, January 1984


Heat transport and electron distribution function in laser produced plasmas with hot spots
journal, May 2002

  • Batishchev, O. V.; Bychenkov, V. Yu.; Detering, F.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1461385

Nonlocal Electron Transport in a Plasma
journal, December 1995


Nonlocal Heat Transport Due to Steep Temperature Gradients
journal, October 1983


Nonlocal Electron Heat Transport by Not Quite Maxwell-Boltzmann Distributions
journal, October 1986


Laser–plasma interaction studies in the context of shock ignition: the regime dominated by parametric instabilities
journal, July 2013


Thomson scattering measurements of heat flow in a laser-produced plasma
journal, March 2004

  • Hawreliak, J.; Chambers, D. M.; Glenzer, S. H.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 37, Issue 7
  • DOI: 10.1088/0953-4075/37/7/013

Works referencing / citing this record:

Measuring heat flux from collective Thomson scattering with non-Maxwellian distribution functions
journal, March 2019

  • Henchen, R. J.; Sherlock, M.; Rozmus, W.
  • Physics of Plasmas, Vol. 26, Issue 3
  • DOI: 10.1063/1.5086753

Validation of OSHUN against collisionless and collisional plasma physics
journal, May 2018

  • Joglekar, Archis S.; Winjum, Benjamin J.; Tableman, Adam
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 6
  • DOI: 10.1088/1361-6587/aab978