skip to main content


This content will become publicly available on February 16, 2019

Title: Ultrafast shock compression of PDMS-based polymers

The shock response of polymers is important for a number of commercial and defense–related applications, but it is difficult to obtain empirical shock response data over the wide range of preparations and aging conditions typically found in such applications. Ultrafast compression is useful to characterize polymer shock response over a wide range of polymer initial conditions due to the high throughput of this method. To establish greater confidence in ultrafast compression experiments and to characterize the detailed shock response of several variations in a single base polymer, the results of sub–nanosecond shock compression experiments in ~5 μm thick layers of the polydimethylsiloxane (PDMS)–based elastomeric rubbers Sylgard–184, SE1700, and an unfilled, end–linked model PDMS network are presented. The results of conventional ultrafast shock etalon measurements to time–of–flight measurements for similar thickness layers of irradiated and unirradiated SE1700 are compared. Here, good agreement between the shock response measured by these two ultrafast shock methods, as well as consistency between ultrafast data and long time scale gas gun data is found.
ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0887-6266; 895994
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Polymer Science. Part B, Polymer Physics
Additional Journal Information:
Journal Volume: 56; Journal Issue: 11; Journal ID: ISSN 0887-6266
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; compression; dynamic mechanical properties; elastomers; irradiation; polydimethylsiloxane; response; shock; strain; strength; ultrafast
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1421566