skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

Abstract

The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here in this work, we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.

Authors:
ORCiD logo [1];  [1];  [2]; ORCiD logo [3];  [1];  [1];  [4];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Max-Planck-Institut für Plasmaphysik, Garching (Germany)
  3. Univ. of California, Los Angeles, CA (United States)
  4. Max-Planck-Institut für Plasmaphysik, Garching (Germany); Univ. of California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC)
OSTI Identifier:
1458659
Report Number(s):
LLNL-JRNL-734141
Journal ID: ISSN 0029-5515; 886124; TRN: US1901494
Grant/Contract Number:  
AC52-07NA27344; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 58; Journal Issue: 5; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Parker, Jeffrey B., LoDestro, Lynda L., Told, Daniel, Merlo, Gabriele, Ricketson, Lee F., Campos, Alejandro, Jenko, Frank, and Hittinger, Jeffrey A. F. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach. United States: N. p., 2018. Web. doi:10.1088/1741-4326/aab5c8.
Parker, Jeffrey B., LoDestro, Lynda L., Told, Daniel, Merlo, Gabriele, Ricketson, Lee F., Campos, Alejandro, Jenko, Frank, & Hittinger, Jeffrey A. F. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach. United States. doi:10.1088/1741-4326/aab5c8.
Parker, Jeffrey B., LoDestro, Lynda L., Told, Daniel, Merlo, Gabriele, Ricketson, Lee F., Campos, Alejandro, Jenko, Frank, and Hittinger, Jeffrey A. F. Mon . "Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach". United States. doi:10.1088/1741-4326/aab5c8. https://www.osti.gov/servlets/purl/1458659.
@article{osti_1458659,
title = {Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach},
author = {Parker, Jeffrey B. and LoDestro, Lynda L. and Told, Daniel and Merlo, Gabriele and Ricketson, Lee F. and Campos, Alejandro and Jenko, Frank and Hittinger, Jeffrey A. F.},
abstractNote = {The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here in this work, we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.},
doi = {10.1088/1741-4326/aab5c8},
journal = {Nuclear Fusion},
number = 5,
volume = 58,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Results from Simulation 1. (a) The 3 MW input heat source V'S. The red shaded region indicates the area where the heat source is applied. (b) Temperature pro file. (c) Normalized temperature gradient R0/LT = -(R0=T )dT/dr. (d) Heat flow H = V'q̂. Shown in (b), (c), andmore » (d) are the initial iterate (dashed curve), the mean over the fi nal 20 out of 50 iterations (red curve labeled "solution"). Also shown in (b) and (d) are a few early iterations (numbered curves), and the standard deviation over the nal 20 iterations (light blue shaded region). In (d), the black dots depict the integral of the source, with which the numerical solution agrees well. The initial iterate has a higher resolution than the other curves because it is taken directly from a GENE simulation rather than the Tango grid. This heat ow taken from GENE falls to zero at the outer edge because of the buffer zone in GENE. The larger R0/LT that develops toward the edge r/a ≈ 0:9 in Simulations 1 and 2 is an artifact of the buffer zone and does not have a direct effect (see the Supplemental Material for more details about the buffer zone).« less

Save / Share:

Works referenced in this record:

The Gyrokinetic Description of Microturbulence in Magnetized Plasmas
journal, January 2012


Foundations of nonlinear gyrokinetic theory
journal, April 2007


Gyrokinetic simulations of turbulent transport
journal, March 2010


Electron temperature gradient driven turbulence
journal, May 2000

  • Jenko, F.; Dorland, W.; Kotschenreuther, M.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874014

Electron Temperature Gradient Turbulence
journal, December 2000


An Eulerian gyrokinetic-Maxwell solver
journal, April 2003


Electromagnetic gyrokinetic δf particle-in-cell turbulence simulation with realistic equilibrium profiles and geometry
journal, January 2007


Global full- f gyrokinetic simulations of plasma turbulence
journal, November 2007


Compressed ion temperature gradient turbulence in diverted tokamak edge
journal, May 2009

  • Chang, C. S.; Ku, S.; Diamond, P. H.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3099329

Turbulence spreading and transport scaling in global gyrokinetic particle simulations
journal, March 2004


System Size Effects on Gyrokinetic Turbulence
journal, October 2010


Flux- and gradient-driven global gyrokinetic simulation of tokamak turbulence
journal, May 2011

  • Görler, Tobias; Lapillonne, Xavier; Brunner, Stephan
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3567484

Validation studies of gyrofluid and gyrokinetic predictions of transport and turbulence stiffness using the DIII-D tokamak
journal, July 2013


A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence
journal, December 2014

  • Görler, T.; White, A. E.; Told, D.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4904301

Gyrokinetic studies of core turbulence features in ASDEX Upgrade H-mode plasmas
journal, April 2015

  • Navarro, A. Bañón; Happel, T.; Görler, T.
  • Physics of Plasmas, Vol. 22, Issue 4
  • DOI: 10.1063/1.4919022

Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating
journal, May 2016

  • Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948723

Multi-scale gyrokinetic simulations: Comparison with experiment and implications for predicting turbulence and transport
journal, April 2016

  • Howard, N. T.; Holland, C.; White, A. E.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946028

Full- f gyrokinetic simulation over a confinement time
journal, February 2014


Plasma size and power scaling of ion temperature gradient driven turbulence
journal, February 2014

  • Idomura, Yasuhiro; Nakata, Motoki
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4867379

Finding the Elusive E × B Staircase in Magnetized Plasmas
journal, February 2015


What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?
journal, January 2017

  • Kim, Kyuho; Chang, C. S.; Seo, Janghoon
  • Physics of Plasmas, Vol. 24, Issue 1
  • DOI: 10.1063/1.4974777

Full-f XGC1 gyrokinetic study of improved ion energy confinement from impurity stabilization of ITG turbulence
journal, June 2017

  • Kim, Kyuho; Kwon, Jae-Min; Chang, C. S.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4984991

Rho-Star Scaling and Physically Realistic Gyrokinetic Simulations of Transport in DIII-D
journal, October 2005


Chapter 1: Overview and summary
journal, June 2007


Tokamak profile prediction using direct gyrokinetic and neoclassical simulation
journal, June 2009

  • Candy, J.; Holland, C.; Waltz, R. E.
  • Physics of Plasmas, Vol. 16, Issue 6
  • DOI: 10.1063/1.3167820

Direct multiscale coupling of a transport code to gyrokinetic turbulence codes
journal, May 2010

  • Barnes, M.; Abel, I. G.; Dorland, W.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3323082

Advances in comprehensive gyrokinetic simulations of transport in tokamaks
journal, July 2005


Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears
journal, April 2011

  • Waltz, R. E.; Staebler, G. M.; Solomon, W. M.
  • Physics of Plasmas, Vol. 18, Issue 4
  • DOI: 10.1063/1.3579481

Transport processes and entropy production in toroidally rotating plasmas with electrostatic turbulence
journal, February 1997

  • Sugama, H.; Horton, W.
  • Physics of Plasmas, Vol. 4, Issue 2
  • DOI: 10.1063/1.872099

Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows
journal, July 1998

  • Sugama, H.; Horton, W.
  • Physics of Plasmas, Vol. 5, Issue 7
  • DOI: 10.1063/1.872941

Self-consistent modeling of turbulence and transport
journal, March 2003


The global version of the gyrokinetic turbulence code GENE
journal, August 2011

  • Görler, T.; Lapillonne, X.; Brunner, S.
  • Journal of Computational Physics, Vol. 230, Issue 18
  • DOI: 10.1016/j.jcp.2011.05.034

Clarifications to the limitations of the s-α equilibrium model for gyrokinetic computations of turbulence
journal, March 2009

  • Lapillonne, X.; Brunner, S.; Dannert, T.
  • Physics of Plasmas, Vol. 16, Issue 3
  • DOI: 10.1063/1.3096710

The local limit of global gyrokinetic simulations
journal, May 2004

  • Candy, J.; Waltz, R. E.; Dorland, W.
  • Physics of Plasmas, Vol. 11, Issue 5
  • DOI: 10.1063/1.1695358

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.