DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Autoignition of trans -decalin, a diesel surrogate compound: Rapid compression machine experiments and chemical kinetic modeling

Journal Article · · Combustion and Flame

Decahydronaphthalene (decalin), with both cis and trans isomers, is a bicyclic alkane that is found in aviation fuels, diesel fuels, and alternative fuels from tar sands and oil shales. Between the two decalin isomers, trans-decalin has a lower cetane number, is energetically more stable, and has a lower boiling point. Moreover, trans-decalin has often been chosen as a surrogate component to represent two-ring naphthenes in transportation fuels. Recognizing the importance of understanding the chemical kinetics of trans-decalin in the development of surrogate models, an experimental and modeling study has been conducted. Experimentally, the autoignition characteristics of trans-decalin were investigated using a rapid compression machine (RCM) by using trans-decalin/O2/N2 mixtures at compressed pressures of PC=10–25 bar, low-to-intermediate compressed temperatures of TC=620–895 K, and varying equivalence ratios of Φ=0.5, 1.0, and 2.0. These new experimental data demonstrate the effects of pressure, fuel loading, and oxygen concentration on autoignition of trans-decalin. The current RCM data of trans-decalin at lower temperatures were also found to complement well with the literature shock tube data of decalin (mixture of cis+trans) at higher temperatures. Furthermore, a chemical kinetic model for the oxidation of trans-decalin has been developed with new reaction rates and pathways, including, for the first time, a fully-detailed representation of low-temperature chemical kinetics for transdecalin. This model shows good agreement with the overall ignition delay results of the current RCM experiments and the literature shock tube studies. Chemical kinetic analyses of the developed model were further conducted to help identify the fuel decomposition pathways and the reactions controlling the autoignition at varying conditions.

Research Organization:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
AC52-07NA27344
OSTI ID:
1458649
Alternate ID(s):
OSTI ID: 1580534
Report Number(s):
LLNL-JRNL-742379; 897100
Journal Information:
Combustion and Flame, Vol. 194, Issue C; ISSN 0010-2180
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science