skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism

Abstract

We introduce a class of iterated integrals, defined through a set of linearly independent integration kernels on elliptic curves. As a direct generalization of multiple polylogarithms, we construct our set of integration kernels ensuring that they have at most simple poles, implying that the iterated integrals have at most logarithmic singularities. We study the properties of our iterated integrals and their relationship to the multiple elliptic polylogarithms from the mathematics literature. On the one hand, we find that our iterated integrals span essentially the same space of functions as the multiple elliptic polylogarithms. On the other, our formulation allows for a more direct use to solve a large variety of problems in high-energy physics. As a result, we demonstrate the use of our functions in the evaluation of the Laurent expansion of some hypergeometric functions for values of the indices close to half integers.

Authors:
 [1];  [2];  [3];  [4]
  1. Humboldt-Univ. zu Berlin, Berlin (Germany)
  2. European Organization for Nuclear Research (CERN), Geneva (Switzerland); Univ. Catholique de Louvain, Louvain-La-Neuve (Belgium)
  3. Stanford Univ., Stanford, CA (United States)
  4. European Organization for Nuclear Research (CERN), Geneva (Switzerland)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1458523
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2018; Journal Issue: 5; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; NLO Computations; QCD Phenomenology

Citation Formats

Broedel, Johannes, Duhr, Claude, Dulat, Falko, and Tancredi, Lorenzo. Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism. United States: N. p., 2018. Web. doi:10.1007/jhep05(2018)093.
Broedel, Johannes, Duhr, Claude, Dulat, Falko, & Tancredi, Lorenzo. Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism. United States. doi:10.1007/jhep05(2018)093.
Broedel, Johannes, Duhr, Claude, Dulat, Falko, and Tancredi, Lorenzo. Tue . "Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism". United States. doi:10.1007/jhep05(2018)093. https://www.osti.gov/servlets/purl/1458523.
@article{osti_1458523,
title = {Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism},
author = {Broedel, Johannes and Duhr, Claude and Dulat, Falko and Tancredi, Lorenzo},
abstractNote = {We introduce a class of iterated integrals, defined through a set of linearly independent integration kernels on elliptic curves. As a direct generalization of multiple polylogarithms, we construct our set of integration kernels ensuring that they have at most simple poles, implying that the iterated integrals have at most logarithmic singularities. We study the properties of our iterated integrals and their relationship to the multiple elliptic polylogarithms from the mathematics literature. On the one hand, we find that our iterated integrals span essentially the same space of functions as the multiple elliptic polylogarithms. On the other, our formulation allows for a more direct use to solve a large variety of problems in high-energy physics. As a result, we demonstrate the use of our functions in the evaluation of the Laurent expansion of some hypergeometric functions for values of the indices close to half integers.},
doi = {10.1007/jhep05(2018)093},
journal = {Journal of High Energy Physics (Online)},
number = 5,
volume = 2018,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Massless Higher-Loop Two-Point Function
journal, February 2009


The elliptic dilogarithm for the sunset graph
journal, March 2015


Two-loop sunset diagrams with three massive lines
journal, March 2006


Master integrals with 2 and 3 massive propagators for the 2-loop electroweak form factor—planar case
journal, October 2004


Elliptic multiple zeta values and one-loop superstring amplitudes
journal, July 2015

  • Broedel, Johannes; Mafra, Carlos R.; Matthes, Nils
  • Journal of High Energy Physics, Vol. 2015, Issue 7
  • DOI: 10.1007/JHEP07(2015)112

A non-planar two-loop three-point function beyond multiple polylogarithms
journal, June 2017

  • von Manteuffel, Andreas; Tancredi, Lorenzo
  • Journal of High Energy Physics, Vol. 2017, Issue 6
  • DOI: 10.1007/JHEP06(2017)127

Iterated binomial sums and their associated iterated integrals
journal, November 2014

  • Ablinger, J.; Blümlein, J.; Raab, C. G.
  • Journal of Mathematical Physics, Vol. 55, Issue 11
  • DOI: 10.1063/1.4900836

Fourth order spectral functions for the electron propagator
journal, May 1962


Local mirror symmetry and the sunset Feynman integral
journal, January 2017

  • Bloch, Spencer; Kerr, Matt; Vanhove, Pierre
  • Advances in Theoretical and Mathematical Physics, Vol. 21, Issue 6
  • DOI: 10.4310/ATMP.2017.v21.n6.a1

The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms
journal, October 2014

  • Adams, Luise; Bogner, Christian; Weinzierl, Stefan
  • Journal of Mathematical Physics, Vol. 55, Issue 10
  • DOI: 10.1063/1.4896563

Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms
journal, March 2018


On the algebraic structure of iterated integrals of quasimodular forms
journal, January 2017


Harmonic Polylogarithms
journal, February 2000

  • Remiddi, E.; Vermaseren, J. A. M.
  • International Journal of Modern Physics A, Vol. 15, Issue 05
  • DOI: 10.1142/S0217751X00000367

Numerical evaluation of multiple polylogarithms
journal, May 2005


The Bloch-Wigner-Ramakrishnan polylogarithm function
journal, March 1990


The iterated structure of the all-order result for the two-loop sunrise integral
journal, March 2016

  • Adams, Luise; Bogner, Christian; Weinzierl, Stefan
  • Journal of Mathematical Physics, Vol. 57, Issue 3
  • DOI: 10.1063/1.4944722

NNLO QCD corrections to γ + η c (η b ) exclusive production in electron-positron collision
journal, January 2018

  • Chen, Long-Bin; Liang, Yi; Qiao, Cong-Feng
  • Journal of High Energy Physics, Vol. 2018, Issue 1
  • DOI: 10.1007/JHEP01(2018)091

Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals
journal, March 2015


Elliptic polylogarithms and basic hypergeometric functions
journal, February 2017


On the generalized harmonic polylogarithms of one complex variable
journal, June 2011


Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes
journal, August 2012


Analytic treatment of the two loop equal mass sunrise graph
journal, January 2005


Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence
journal, December 2016

  • Bonciani, Roberto; Del Duca, Vittorio; Frellesvig, Hjalte
  • Journal of High Energy Physics, Vol. 2016, Issue 12
  • DOI: 10.1007/JHEP12(2016)096

Simple one-dimensional integral representations for two-loop self-energies: the master diagram
journal, July 1995


Harmonic sums and polylogarithms generated by cyclotomic polynomials
journal, October 2011

  • Ablinger, Jakob; Blümlein, Johannes; Schneider, Carsten
  • Journal of Mathematical Physics, Vol. 52, Issue 10
  • DOI: 10.1063/1.3629472

The kite integral to all orders in terms of elliptic polylogarithms
journal, December 2016

  • Adams, Luise; Bogner, Christian; Schweitzer, Armin
  • Journal of Mathematical Physics, Vol. 57, Issue 12
  • DOI: 10.1063/1.4969060

An elliptic generalization of multiple polylogarithms
journal, December 2017


Classical Polylogarithms for Amplitudes and Wilson Loops
journal, October 2010


Geometry of Configurations, Polylogarithms, and Motivic Cohomology
journal, September 1995


Uniqueness of two-loop master contours
journal, October 2012

  • Caron-Huot, Simon; Larsen, Kasper J.
  • Journal of High Energy Physics, Vol. 2012, Issue 10
  • DOI: 10.1007/JHEP10(2012)026

Analytical and numerical methods for massive two-loop self-energy diagrams
journal, January 1995


A Feynman integral via higher normal functions
journal, August 2015


The two-loop sunrise graph with arbitrary masses
journal, May 2013

  • Adams, Luise; Bogner, Christian; Weinzierl, Stefan
  • Journal of Mathematical Physics, Vol. 54, Issue 5
  • DOI: 10.1063/1.4804996

The two loop crossed ladder vertex diagram with two massive exchanges
journal, January 2008


The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case
journal, July 2015

  • Adams, Luise; Bogner, Christian; Weinzierl, Stefan
  • Journal of Mathematical Physics, Vol. 56, Issue 7
  • DOI: 10.1063/1.4926985

    Works referencing / citing this record:

    The cosmic Galois group and extended Steinmann relations for planar N$$ \mathcal{N} $$ = 4 SYM amplitudes
    journal, September 2019

    • Caron-Huot, Simon; Dixon, Lance J.; Dulat, Falko
    • Journal of High Energy Physics, Vol. 2019, Issue 9
    • DOI: 10.1007/jhep09(2019)061

    The cosmic Galois group and extended Steinmann relations for planar N $$ \mathcal{N} $$ = 4 SYM amplitudes
    text, January 2019

    • Caron-Huot, Simon; Dixon, Lance J.; Dulat, Falko
    • Deutsches Elektronen-Synchrotron, DESY, Hamburg
    • DOI: 10.3204/pubdb-2019-03749