skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on June 20, 2019

Title: A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials

Design of a new 3D Dirac nodal-line semi-metallic graphene monolith with potential for a high performance lithium ion battery anode material.
Authors:
ORCiD logo [1] ;  [1] ; ORCiD logo [1] ;  [2] ;  [3]
  1. Center for Applied Physics and Technology, Department of Materials Science and Engineering, HEDPS, BKL-MEMD, College of Engineering
  2. New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
  3. Department of Physics, Virginia Commonwealth University, Richmond, USA
Publication Date:
Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Materials Chemistry A
Additional Journal Information:
Journal Name: Journal of Materials Chemistry A Journal Volume: 6 Journal Issue: 28; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry (RSC)
Sponsoring Org:
USDOE
Country of Publication:
United Kingdom
Language:
English
OSTI Identifier:
1457796

Liu, Jie, Li, Xiaoyin, Wang, Qian, Kawazoe, Yoshiyuki, and Jena, Puru. A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials. United Kingdom: N. p., Web. doi:10.1039/C8TA04428G.
Liu, Jie, Li, Xiaoyin, Wang, Qian, Kawazoe, Yoshiyuki, & Jena, Puru. A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials. United Kingdom. doi:10.1039/C8TA04428G.
Liu, Jie, Li, Xiaoyin, Wang, Qian, Kawazoe, Yoshiyuki, and Jena, Puru. 2018. "A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials". United Kingdom. doi:10.1039/C8TA04428G.
@article{osti_1457796,
title = {A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials},
author = {Liu, Jie and Li, Xiaoyin and Wang, Qian and Kawazoe, Yoshiyuki and Jena, Puru},
abstractNote = {Design of a new 3D Dirac nodal-line semi-metallic graphene monolith with potential for a high performance lithium ion battery anode material.},
doi = {10.1039/C8TA04428G},
journal = {Journal of Materials Chemistry A},
number = 28,
volume = 6,
place = {United Kingdom},
year = {2018},
month = {1}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996
  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994

Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review
journal, July 2009

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000
  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Special points for Brillouin-zone integrations
journal, June 1976
  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996

Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006
  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

Li–O2 and Li–S batteries with high energy storage
journal, January 2012
  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191