DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impacts of Shifts in Phytoplankton Community on Clouds and Climate via the Sulfur Cycle

Abstract

Dimethyl sulfide (DMS) is an organosulfur compound primarily produced by marine organisms, and it contributes significantly to sulfate aerosol loading over the ocean after being oxidized in the atmosphere. In addition to exerting a direct radiative effect on climate, the resulting aerosol particles act as cloud condensation nuclei (CCN), modulating cloud properties and extent, with impacts on atmospheric radiative transfer and climate. Thus changes in pelagic ecosystems, such as phytoplankton physiology and community structure as they may influence organosulfur production, affect climate via the sulfur cycle. A fully coupled Earth system model, including prognostic calculations of marine ecosystems with the sulfur cycle, is used here to investigate the impacts of changes associated with individual phytoplankton groups on DMS emissions and climate. Simulations show that changes in phytoplankton community structure, DMS production efficiency and interactions of multi-element biogeochemical cycles can all lead to significant differences in DMS transfer to the atmosphere. Subsequent changes in sulfate aerosol burden plus CCN number and distribution are examined, since these are properties closely related to aerosol direct and indirect effects on radiative forcing. We find individual phytoplankton group-induced total cloud forcing change is up to 5 W/m2 of warming in the North Atlantic and surfacemore » temperature warming is enhanced by up to 2°C on regional scales in a simulation with radiative forcings at the 2100 level under an 8.5 scenario. Moreover, we note large shifts in (atmospheric) hydrological cycle indicators such as cloud fraction and liquid water path. However, the global mean temperature response is relatively small, with average increases only up to 0.1°C. Hence we speculate that major uncertainties associated with future marine sulfur cycling will involve strong region-to-region climate shifts and teleconnections between them. Further improvements in understanding of marine ecosystems and the relevant phytoplankton-aerosol-climate linkage are needed for improving climate projections.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]
  1. The Climate Ocean and Sea Ice Modeling GroupLos Alamos National Laboratory Los Alamos NM USA
  2. Atmospheric Sciences and Global Change DivisionPacific Northwest National Laboratory Richland WA USA
  3. Atmospheric, Earth and Energy DivisionLawrence Livermore National Laboratory Livermore CA USA
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1457471
Alternate Identifier(s):
OSTI ID: 1457472; OSTI ID: 1481139; OSTI ID: 1512606; OSTI ID: 1558386
Report Number(s):
LA-UR-17-30988; LLNL-JRNL-749059; PNNL-SA-131065
Journal ID: ISSN 0886-6236
Grant/Contract Number:  
AC52‐07NA27344; AC52-06NA25396; AC52-07NA27344; AC05-76RL01830
Resource Type:
Published Article
Journal Name:
Global Biogeochemical Cycles
Additional Journal Information:
Journal Name: Global Biogeochemical Cycles Journal Volume: 32 Journal Issue: 6; Journal ID: ISSN 0886-6236
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Earth Sciences; phytoplankton; dimethyl sulfide; community composition change; climate impact; DMS, dimethyl sulfide, DMS, Aerosol-Cloud Interactions, sulfur cycle, Climate & Earth System Models, global Earth System Model, phytoplankton, ocean biogeochemistry

Citation Formats

Wang, Shanlin, Maltrud, Mathew E., Burrows, Susannah M., Elliott, Scott M., and Cameron‐Smith, Philip. Impacts of Shifts in Phytoplankton Community on Clouds and Climate via the Sulfur Cycle. United States: N. p., 2018. Web. doi:10.1029/2017GB005862.
Wang, Shanlin, Maltrud, Mathew E., Burrows, Susannah M., Elliott, Scott M., & Cameron‐Smith, Philip. Impacts of Shifts in Phytoplankton Community on Clouds and Climate via the Sulfur Cycle. United States. https://doi.org/10.1029/2017GB005862
Wang, Shanlin, Maltrud, Mathew E., Burrows, Susannah M., Elliott, Scott M., and Cameron‐Smith, Philip. Fri . "Impacts of Shifts in Phytoplankton Community on Clouds and Climate via the Sulfur Cycle". United States. https://doi.org/10.1029/2017GB005862.
@article{osti_1457471,
title = {Impacts of Shifts in Phytoplankton Community on Clouds and Climate via the Sulfur Cycle},
author = {Wang, Shanlin and Maltrud, Mathew E. and Burrows, Susannah M. and Elliott, Scott M. and Cameron‐Smith, Philip},
abstractNote = {Dimethyl sulfide (DMS) is an organosulfur compound primarily produced by marine organisms, and it contributes significantly to sulfate aerosol loading over the ocean after being oxidized in the atmosphere. In addition to exerting a direct radiative effect on climate, the resulting aerosol particles act as cloud condensation nuclei (CCN), modulating cloud properties and extent, with impacts on atmospheric radiative transfer and climate. Thus changes in pelagic ecosystems, such as phytoplankton physiology and community structure as they may influence organosulfur production, affect climate via the sulfur cycle. A fully coupled Earth system model, including prognostic calculations of marine ecosystems with the sulfur cycle, is used here to investigate the impacts of changes associated with individual phytoplankton groups on DMS emissions and climate. Simulations show that changes in phytoplankton community structure, DMS production efficiency and interactions of multi-element biogeochemical cycles can all lead to significant differences in DMS transfer to the atmosphere. Subsequent changes in sulfate aerosol burden plus CCN number and distribution are examined, since these are properties closely related to aerosol direct and indirect effects on radiative forcing. We find individual phytoplankton group-induced total cloud forcing change is up to 5 W/m2 of warming in the North Atlantic and surface temperature warming is enhanced by up to 2°C on regional scales in a simulation with radiative forcings at the 2100 level under an 8.5 scenario. Moreover, we note large shifts in (atmospheric) hydrological cycle indicators such as cloud fraction and liquid water path. However, the global mean temperature response is relatively small, with average increases only up to 0.1°C. Hence we speculate that major uncertainties associated with future marine sulfur cycling will involve strong region-to-region climate shifts and teleconnections between them. Further improvements in understanding of marine ecosystems and the relevant phytoplankton-aerosol-climate linkage are needed for improving climate projections.},
doi = {10.1029/2017GB005862},
journal = {Global Biogeochemical Cycles},
number = 6,
volume = 32,
place = {United States},
year = {Fri Jun 01 00:00:00 EDT 2018},
month = {Fri Jun 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1029/2017GB005862

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2)
journal, January 2015

  • Tilmes, S.; Lamarque, J. -F.; Emmons, L. K.
  • Geoscientific Model Development, Vol. 8, Issue 5
  • DOI: 10.5194/gmd-8-1395-2015

Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models
journal, October 2014


The CCSM4 Ocean Component
journal, March 2012

  • Danabasoglu, Gokhan; Bates, Susan C.; Briegleb, Bruce P.
  • Journal of Climate, Vol. 25, Issue 5
  • DOI: 10.1175/JCLI-D-11-00091.1

The Community Climate System Model Version 4
journal, October 2011

  • Gent, Peter R.; Danabasoglu, Gokhan; Donner, Leo J.
  • Journal of Climate, Vol. 24, Issue 19
  • DOI: 10.1175/2011JCLI4083.1

Simulating dimethylsulphide seasonality with the Dynamic Green Ocean Model PlankTOM5
journal, January 2010

  • Vogt, M.; Vallina, S. M.; Buitenhuis, E. T.
  • Journal of Geophysical Research, Vol. 115, Issue C6
  • DOI: 10.1029/2009JC005529

Large contribution of natural aerosols to uncertainty in indirect forcing
journal, November 2013

  • Carslaw, K. S.; Lee, L. A.; Reddington, C. L.
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12674

Climate sensitivity to ocean dimethylsulphide emissions
journal, January 2006

  • Gunson, J. R.; Spall, S. A.; Anderson, T. R.
  • Geophysical Research Letters, Vol. 33, Issue 7
  • DOI: 10.1029/2005GL024982

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

DMS flux over the Antarctic sea ice zone
journal, April 2012


Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2
journal, November 2015

  • Rivero-Calle, S.; Gnanadesikan, A.; Del Castillo, C. E.
  • Science, Vol. 350, Issue 6267
  • DOI: 10.1126/science.aaa8026

The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implications
journal, August 2007


Influence of explicit Phaeocystis parameterizations on the global distribution of marine dimethyl sulfide
journal, November 2015

  • Wang, Shanlin; Elliott, Scott; Maltrud, Mathew
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 11
  • DOI: 10.1002/2015JG003017

Enhanced Production of Oceanic Dimethylsulfide Resulting from CO 2 -Induced Grazing Activity in a High CO 2 World
journal, November 2010

  • Kim, Ja-Myung; Lee, Kitack; Yang, Eun Jin
  • Environmental Science & Technology, Vol. 44, Issue 21
  • DOI: 10.1021/es102028k

Global marine plankton functional type biomass distributions: Phaeocystis spp.
journal, January 2012


Temperature effects on growth, colony development and carbon partitioning in three Phaeocystis species
journal, June 2010

  • Wang, X.; Tang, Kw; Wang, Y.
  • Aquatic Biology, Vol. 9, Issue 3
  • DOI: 10.3354/ab00256

The case against climate regulation via oceanic phytoplankton sulphur emissions
journal, November 2011


Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming: RESPONSE OF DMS TO GLOBAL WARMING
journal, July 2007

  • Kloster, S.; Six, K. D.; Feichter, J.
  • Journal of Geophysical Research: Biogeosciences, Vol. 112, Issue G3
  • DOI: 10.1029/2006JG000224

Will marine dimethylsulfide emissions amplify or alleviate global warming? A model study
journal, May 2004

  • Bopp, Laurent; Boucher, Olivier; Aumont, Olivier
  • Canadian Journal of Fisheries and Aquatic Sciences, Vol. 61, Issue 5
  • DOI: 10.1139/f04-045

Sedimentary and mineral dust sources of dissolved iron to the world ocean
journal, January 2008


Phaeocystis blooms in the global ocean and their controlling mechanisms: a review
journal, January 2005

  • Schoemann, Véronique; Becquevort, Sylvie; Stefels, Jacqueline
  • Journal of Sea Research, Vol. 53, Issue 1-2
  • DOI: 10.1016/j.seares.2004.01.008

Influence of dimethyl sulfide on the carbon cycle and biological production
journal, February 2018


Global coccolithophore diversity: Drivers and future change
journal, January 2016


Integrating Cloud Processes in the Community Atmosphere Model, Version 5
journal, September 2014

  • Park, Sungsu; Bretherton, Christopher S.; Rasch, Philip J.
  • Journal of Climate, Vol. 27, Issue 18
  • DOI: 10.1175/JCLI-D-14-00087.1

The iron budget in ocean surface waters in the 20th and 21st centuries: projections by the Community Earth System Model version 1
journal, January 2014


Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC)
journal, December 2014


Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models
journal, November 2000

  • Kettle, A. J.; Andreae, M. O.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D22
  • DOI: 10.1029/2000JD900252

Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide
journal, January 2010

  • Woodhouse, M. T.; Carslaw, K. S.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 16
  • DOI: 10.5194/acp-10-7545-2010

Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008
journal, January 2009

  • Kwok, R.; Cunningham, G. F.; Wensnahan, M.
  • Journal of Geophysical Research, Vol. 114, Issue C7
  • DOI: 10.1029/2009JC005312

Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model
journal, January 2017


Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model: GLOBAL ECOSYSTEM-BIOGEOCHEMICAL MODEL
journal, December 2004

  • Moore, J. Keith; Doney, Scott C.; Lindsay, Keith
  • Global Biogeochemical Cycles, Vol. 18, Issue 4
  • DOI: 10.1029/2004GB002220

Dimethylsulfide emissions over the multi-year ice of the western Weddell Sea
journal, January 2008

  • Zemmelink, H. J.; Dacey, J. W. H.; Houghton, L.
  • Geophysical Research Letters, Vol. 35, Issue 6
  • DOI: 10.1029/2007GL031847

Secular trends in Arctic Ocean net primary production
journal, January 2011

  • Arrigo, Kevin R.; van Dijken, Gert L.
  • Journal of Geophysical Research, Vol. 116, Issue C9
  • DOI: 10.1029/2011JC007151

Dependence of DMS global sea-air flux distribution on transfer velocity and concentration field type: DMS GLOBAL SEA-AIR FLUX DISTRIBUTION
journal, April 2009

  • Elliott, Scott
  • Journal of Geophysical Research: Biogeosciences, Vol. 114, Issue G2
  • DOI: 10.1029/2008JG000710

CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model
journal, January 2012

  • Lamarque, J. -F.; Emmons, L. K.; Hess, P. G.
  • Geoscientific Model Development, Vol. 5, Issue 2
  • DOI: 10.5194/gmd-5-369-2012

Quantification of DMS aerosol-cloud-climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario
journal, January 2010

  • Thomas, M. A.; Suntharalingam, P.; Pozzoli, L.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 15
  • DOI: 10.5194/acp-10-7425-2010

Satellite-derived multi-year trend in primary production in the Arctic Ocean
journal, February 2013

  • Petrenko, Dmitry; Pozdnyakov, Dmitry; Johannessen, Johnny
  • International Journal of Remote Sensing, Vol. 34, Issue 11
  • DOI: 10.1080/01431161.2012.762698

Prediction of pelagic calcification rates using satellite measurements
journal, March 2007

  • Balch, William; Drapeau, David; Bowler, Bruce
  • Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 54, Issue 5-7
  • DOI: 10.1016/j.dsr2.2006.12.006

Impact of ocean acidification on the structure of future phytoplankton communities
journal, July 2015

  • Dutkiewicz, Stephanie; Morris, J. Jeffrey; Follows, Michael J.
  • Nature Climate Change, Vol. 5, Issue 11
  • DOI: 10.1038/nclimate2722

Ocean acidification and marine trace gas emissions
journal, December 2009

  • Hopkins, F. E.; Turner, S. M.; Nightingale, P. D.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 2
  • DOI: 10.1073/pnas.0907163107

Mean Biases, Variability, and Trends in Air–Sea Fluxes and Sea Surface Temperature in the CCSM4
journal, November 2012


Potential impact of climate change on marine dimethyl sulfide emissions
journal, February 2003


Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects
journal, January 2014


Response of Photosynthesis to Ocean Acidification [English]
journal, June 2015

  • Mackey, Katherine; Morris, J. Jeffrey; Morel, François
  • Oceanography, Vol. 25, Issue 2
  • DOI: 10.5670/oceanog.2015.33

Rate of non-linearity in DMS aerosol-cloud-climate interactions
journal, January 2011

  • Thomas, M. A.; Suntharalingam, P.; Pozzoli, L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 21
  • DOI: 10.5194/acp-11-11175-2011

Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions
journal, January 2013

  • Woodhouse, M. T.; Mann, G. W.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2723-2013

Impact of Arctic meltdown on the microbial cycling of sulphur
journal, August 2013


Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling
journal, April 2007


Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming
journal, September 2007

  • Vallina, S. M.; Simo, R.; Manizza, M.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 41
  • DOI: 10.1073/pnas.0700843104

An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean: UPDATED DMS CLIMATOLOGY
journal, January 2011

  • Lana, A.; Bell, T. G.; Simó, R.
  • Global Biogeochemical Cycles, Vol. 25, Issue 1
  • DOI: 10.1029/2010GB003850

Global simulations of the impact on contemporary climate of a perturbation to the sea-to-air flux of dimethylsulfide
journal, September 2013

  • Gabric, A.; Qu, B.; Rotstayn, L.
  • Australian Meteorological and Oceanographic Journal, Vol. 63, Issue 3
  • DOI: 10.22499/2.6303.002

A global diatom database – abundance, biovolume and biomass in the world ocean
journal, January 2012


Global imprint of climate change on marine life
journal, August 2013

  • Poloczanska, Elvira S.; Brown, Christopher J.; Sydeman, William J.
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1958

Changes in dimethyl sulfide oceanic distribution due to climate change: OCEANIC DMS AND CLIMATE CHANGE
journal, April 2011

  • Cameron-Smith, Philip; Elliott, Scott; Maltrud, Mathew
  • Geophysical Research Letters, Vol. 38, Issue 7
  • DOI: 10.1029/2011GL047069

Formation of very young colonies by Phaeocystis pouchetii from western Norway
journal, May 2007

  • Verity, Pg; Zirbel, Mj; Nejstgaard, Jc
  • Aquatic Microbial Ecology, Vol. 47
  • DOI: 10.3354/ame047267

Ocean-atmosphere interactions in the global biogeochemical sulfur cycle
journal, January 1990


Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters
journal, January 2013


Observations on colony formation by the cosmopolitan phytoplankton genus Phaeocystis
journal, December 2003


Long-term trends in ocean plankton production and particle export between 1960–2006
journal, January 2013


Effect of elevated pCO2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae)
journal, March 2012

  • Kerrison, Philip; Suggett, David J.; Hepburn, Leanne J.
  • Biogeochemistry, Vol. 110, Issue 1-3
  • DOI: 10.1007/s10533-012-9707-2

Global warming amplified by reduced sulphur fluxes as a result of ocean acidification
journal, August 2013

  • Six, Katharina D.; Kloster, Silvia; Ilyina, Tatiana
  • Nature Climate Change, Vol. 3, Issue 11
  • DOI: 10.1038/nclimate1981

Incorporating Phaeocystis into a Southern Ocean ecosystem model
journal, January 2011

  • Wang, Shanlin; Moore, J. Keith
  • Journal of Geophysical Research, Vol. 116, Issue C1
  • DOI: 10.1029/2009JC005817

The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology
journal, April 2007

  • Rousseau, Véronique; Chrétiennot-Dinet, Marie-Josèphe; Jacobsen, Anita
  • Biogeochemistry, Vol. 83, Issue 1-3
  • DOI: 10.1007/s10533-007-9085-3

Technical Note: Estimating aerosol effects on cloud radiative forcing
journal, January 2013


Toward an Earth system model: atmospheric chemistry, coupling, and petascale computing
journal, September 2006


Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus
journal, May 2013

  • Flombaum, P.; Gallegos, J. L.; Gordillo, R. A.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 24
  • DOI: 10.1073/pnas.1307701110

Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions: MODELING GLOBAL DMS EMISSIONS
journal, June 2004

  • Gabric, A. J.; Simó, R.; Cropp, R. A.
  • Global Biogeochemical Cycles, Vol. 18, Issue 2
  • DOI: 10.1029/2003GB002183

Global phytoplankton decline over the past century
journal, July 2010

  • Boyce, Daniel G.; Lewis, Marlon R.; Worm, Boris
  • Nature, Vol. 466, Issue 7306
  • DOI: 10.1038/nature09268

Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate
journal, April 1987

  • Charlson, Robert J.; Lovelock, James E.; Andreae, Meinrat O.
  • Nature, Vol. 326, Issue 6114
  • DOI: 10.1038/326655a0

Three Different Behaviors of Liquid Water Path of Water Clouds in Aerosol–Cloud Interactions
journal, February 2002


Simulation of anthropogenic CO 2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates
journal, January 2012


Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies
journal, January 2012

  • Avgoustidi, Valia; Nightingale, Philip D.; Joint, Ian
  • Environmental Chemistry, Vol. 9, Issue 4
  • DOI: 10.1071/EN11125