skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The control of hot-electron preheat in shock-ignition implosions

Abstract

In the shock-ignition scheme for inertial confinement fusion, hot electrons resulting from laser–plasma instabilities can play a major role during the late stage of the implosion. This article presents the results of an experiment performed on OMEGA in the so-called “40 + 20 configuration.” Using a recent calibration of the time-resolved hard x-ray diagnostic, the hot electrons’ temperature and total energy were measured. One-dimensional radiation–hydrodynamic simulations have been performed that include hot electrons and are in agreement with the measured neutron-rate–averaged areal density. For an early spike launch, both experiment and simulations show the detrimental effect of hot electrons on areal density and neutron yield. Lastly, for a later spike launch, this effect is minimized because of a higher compression of the target.

Authors:
 [1];  [2];  [2];  [3];  [4]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [5];  [2]; ORCiD logo [3];  [2];  [2];  [2]
  1. Univ. de Bordeaux (France). Centre Lasers Intenses et Applications, CELIA; Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics
  2. Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics
  3. Univ. de Bordeaux (France). Centre Lasers Intenses et Applications, CELIA
  4. Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics; Univ. of Rochester, Rochester, NY (United States). Dept. of Physics and Astronomy; Univ. of Rochester, Rochester, NY (United States). Dept. of Mechanical Engineering
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1457359
Alternate Identifier(s):
OSTI ID: 1438280
Grant/Contract Number:  
NA0001944
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Trela, J., Theobald, W., Anderson, K. S., Batani, D., Betti, R., Casner, A., Delettrez, J. A., Frenje, J. A., Glebov, V. Yu., Ribeyre, X., Solodov, A. A., Stoeckl, M., and Stoeckl, C. The control of hot-electron preheat in shock-ignition implosions. United States: N. p., 2018. Web. doi:10.1063/1.5020981.
Trela, J., Theobald, W., Anderson, K. S., Batani, D., Betti, R., Casner, A., Delettrez, J. A., Frenje, J. A., Glebov, V. Yu., Ribeyre, X., Solodov, A. A., Stoeckl, M., & Stoeckl, C. The control of hot-electron preheat in shock-ignition implosions. United States. doi:10.1063/1.5020981.
Trela, J., Theobald, W., Anderson, K. S., Batani, D., Betti, R., Casner, A., Delettrez, J. A., Frenje, J. A., Glebov, V. Yu., Ribeyre, X., Solodov, A. A., Stoeckl, M., and Stoeckl, C. Tue . "The control of hot-electron preheat in shock-ignition implosions". United States. doi:10.1063/1.5020981. https://www.osti.gov/servlets/purl/1457359.
@article{osti_1457359,
title = {The control of hot-electron preheat in shock-ignition implosions},
author = {Trela, J. and Theobald, W. and Anderson, K. S. and Batani, D. and Betti, R. and Casner, A. and Delettrez, J. A. and Frenje, J. A. and Glebov, V. Yu. and Ribeyre, X. and Solodov, A. A. and Stoeckl, M. and Stoeckl, C.},
abstractNote = {In the shock-ignition scheme for inertial confinement fusion, hot electrons resulting from laser–plasma instabilities can play a major role during the late stage of the implosion. This article presents the results of an experiment performed on OMEGA in the so-called “40 + 20 configuration.” Using a recent calibration of the time-resolved hard x-ray diagnostic, the hot electrons’ temperature and total energy were measured. One-dimensional radiation–hydrodynamic simulations have been performed that include hot electrons and are in agreement with the measured neutron-rate–averaged areal density. For an early spike launch, both experiment and simulations show the detrimental effect of hot electrons on areal density and neutron yield. Lastly, for a later spike launch, this effect is minimized because of a higher compression of the target.},
doi = {10.1063/1.5020981},
journal = {Physics of Plasmas},
number = 5,
volume = 25,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Triple-picket warm plastic-shell implosions on OMEGA
journal, January 2011

  • Radha, P. B.; Stoeckl, C.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 18, Issue 1
  • DOI: 10.1063/1.3544930

Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility
journal, July 2009


Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA
journal, October 2012

  • Theobald, W.; Nora, R.; Lafon, M.
  • Physics of Plasmas, Vol. 19, Issue 10
  • DOI: 10.1063/1.4763556

Physics issues for shock ignition
journal, April 2014


Shock ignition of thermonuclear fuel: principles and modelling
journal, April 2014


Dense plasma heating and shock wave generation by a beam of fast electrons
journal, October 2015

  • Llor Aisa, E.; Ribeyre, X.; Gus'kov, S.
  • Physics of Plasmas, Vol. 22, Issue 10
  • DOI: 10.1063/1.4933119

Shock Ignition of Thermonuclear Fuel with High Areal Density
journal, April 2007


The stability of multiple-shell ICF targets
journal, November 1980

  • Roberts, P. D.; Rose, S. J.; Thompson, P. C.
  • Journal of Physics D: Applied Physics, Vol. 13, Issue 11
  • DOI: 10.1088/0022-3727/13/11/007

Initial experiments on the shock-ignition inertial confinement fusion concept
journal, May 2008

  • Theobald, W.; Betti, R.; Stoeckl, C.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2885197

Calibration of a time-resolved hard-x-ray detector using radioactive sources
journal, August 2016

  • Stoeckl, C.; Theobald, W.; Regan, S. P.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4960599

Inertial-confinement fusion with lasers
journal, May 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3736

Hard x-ray detectors for OMEGA and NIF
journal, January 2001

  • Stoeckl, C.; Glebov, V. Yu.; Meyerhofer, D. D.
  • Review of Scientific Instruments, Vol. 72, Issue 1
  • DOI: 10.1063/1.1322621

Gigabar Spherical Shock Generation on the OMEGA Laser
journal, January 2015


Spherical strong-shock generation for shock-ignition inertial fusiona)
journal, May 2015

  • Theobald, W.; Nora, R.; Seka, W.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920956

Initial performance results of the OMEGA laser system
journal, January 1997


Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser
journal, April 1999

  • Boehly, T. R.; Smalyuk, V. A.; Meyerhofer, D. D.
  • Journal of Applied Physics, Vol. 85, Issue 7
  • DOI: 10.1063/1.369702

Spectrometry of charged particles from inertial-confinement-fusion plasmas
journal, February 2003

  • Séguin, F. H.; Frenje, J. A.; Li, C. K.
  • Review of Scientific Instruments, Vol. 74, Issue 2
  • DOI: 10.1063/1.1518141

Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light
journal, October 1989

  • Skupsky, S.; Short, R. W.; Kessler, T.
  • Journal of Applied Physics, Vol. 66, Issue 8
  • DOI: 10.1063/1.344101

Shock ignition of thermonuclear fuel with high areal densities
journal, May 2008

  • Betti, R.; Theobald, W.; Zhou, C. D.
  • Journal of Physics: Conference Series, Vol. 112, Issue 2, Article No. 022024
  • DOI: 10.1088/1742-6596/112/2/022024

Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance
journal, January 1996

  • Lin, Y.; Lawrence, G. N.; Kessler, T. J.
  • Optics Letters, Vol. 21, Issue 20
  • DOI: 10.1364/OL.21.001703

25 ps neutron detector for measuring ICF‐target burn history
journal, January 1995

  • Lerche, R. A.; Phillion, D. W.; Tietbohl, G. L.
  • Review of Scientific Instruments, Vol. 66, Issue 1
  • DOI: 10.1063/1.1146212

Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments
journal, October 1987


Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions
journal, March 2017


Geant4—a simulation toolkit
journal, July 2003

  • Agostinelli, S.; Allison, J.; Amako, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 506, Issue 3
  • DOI: 10.1016/S0168-9002(03)01368-8

A polar-drive shock-ignition design for the National Ignition Facility
journal, May 2013

  • Anderson, K. S.; Betti, R.; McKenty, P. W.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4804635

Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas
journal, January 1974


Shock ignition: an alternative scheme for HiPER
journal, December 2008


Secondary-neutron-yield measurements by current-mode detectors
journal, January 2001

  • Glebov, V. Yu.; Meyerhofer, D. D.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 72, Issue 1
  • DOI: 10.1063/1.1320998