skip to main content

DOE PAGESDOE PAGES

Title: Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions

Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions. The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of themore » modeling approach to shock problems.« less
Authors:
ORCiD logo [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Report Number(s):
LA-UR-15-22028
Journal ID: ISSN 0749-6419
Grant/Contract Number:
AC52-06NA25396; LDRD-ER-140645
Type:
Accepted Manuscript
Journal Name:
International Journal of Plasticity
Additional Journal Information:
Journal Volume: 76; Journal Issue: C; Journal ID: ISSN 0749-6419
Publisher:
Elsevier
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; crystal plasticity; shock waves; dislocations; dynamics
OSTI Identifier:
1457232
Alternate Identifier(s):
OSTI ID: 1359203