skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries

Abstract

Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differences with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1456808
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 165; Journal Issue: 9; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; cycling stability; graphite anode; Ni-rich cathode

Citation Formats

Mao, Chengyu, Wood, Marissa, David, Lamuel Abraham, An, Seong Jin, Sheng, Yangping, Du, Zhijia, Meyer, III, Harry M., Ruther, Rose E., and Wood, III, David L. Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries. United States: N. p., 2018. Web. doi:10.1149/2.1111809jes.
Mao, Chengyu, Wood, Marissa, David, Lamuel Abraham, An, Seong Jin, Sheng, Yangping, Du, Zhijia, Meyer, III, Harry M., Ruther, Rose E., & Wood, III, David L. Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries. United States. doi:10.1149/2.1111809jes.
Mao, Chengyu, Wood, Marissa, David, Lamuel Abraham, An, Seong Jin, Sheng, Yangping, Du, Zhijia, Meyer, III, Harry M., Ruther, Rose E., and Wood, III, David L. Sat . "Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries". United States. doi:10.1149/2.1111809jes. https://www.osti.gov/servlets/purl/1456808.
@article{osti_1456808,
title = {Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries},
author = {Mao, Chengyu and Wood, Marissa and David, Lamuel Abraham and An, Seong Jin and Sheng, Yangping and Du, Zhijia and Meyer, III, Harry M. and Ruther, Rose E. and Wood, III, David L.},
abstractNote = {Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differences with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.},
doi = {10.1149/2.1111809jes},
journal = {Journal of the Electrochemical Society},
number = 9,
volume = 165,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In situ Raman study of lithium-ion intercalation into microcrystalline graphite
journal, January 2014

  • Sole, Christopher; Drewett, Nicholas E.; Hardwick, Laurence J.
  • Faraday Discuss., Vol. 172
  • DOI: 10.1039/C4FD00079J

7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material
journal, January 2014

  • Khanra, Partha; Lee, Chang-No; Kuila, Tapas
  • Nanoscale, Vol. 6, Issue 9
  • DOI: 10.1039/C3NR05307E

Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries
journal, January 2017

  • Holtstiege, Florian; Wilken, Andrea; Winter, Martin
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 38
  • DOI: 10.1039/C7CP05405J

One Sulfonate and Three Sulfate Electrolyte Additives Studied in Graphite/LiCoO 2 Pouch Cells
journal, January 2015

  • Xia, Jian; Petibon, R.; Sinha, N. N.
  • Journal of The Electrochemical Society, Vol. 162, Issue 12
  • DOI: 10.1149/2.0151512jes

Significant Improvement of Electrochemical Performance of AlF3-Coated Li[Ni0.8Co0.1Mn0.1]O2 Cathode Materials
journal, January 2007

  • Woo, S.-U.; Yoon, C. S.; Amine, K.
  • Journal of The Electrochemical Society, Vol. 154, Issue 11, p. A1005-A1009
  • DOI: 10.1149/1.2776160

The formation and stability of the solid electrolyte interface on the graphite anode
journal, December 2014


Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
journal, October 2016

  • Zhao, Jianqing; Zhang, Wei; Huq, Ashfia
  • Advanced Energy Materials, Vol. 7, Issue 3
  • DOI: 10.1002/aenm.201601266

Fast formation cycling for lithium ion batteries
journal, February 2017


Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction
journal, June 2014


Optimized Silicon Electrode Architecture, Interface, and Microgeometry for Next-Generation Lithium-Ion Batteries
journal, October 2015

  • Molina Piper, Daniela; Evans, Tyler; Xu, Shanshan
  • Advanced Materials, Vol. 28, Issue 1
  • DOI: 10.1002/adma.201503633

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency
journal, October 2016


Tuning of Thermal Stability in Layered Li(Ni x Mn y Co z )O 2
journal, September 2016

  • Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang
  • Journal of the American Chemical Society, Vol. 138, Issue 40
  • DOI: 10.1021/jacs.6b07771

Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries
journal, May 2016

  • Mohanty, Debasish; Dahlberg, Kevin; King, David M.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26532

On the choice of graphite for lithium ion batteries
journal, September 1999


Evaluation of Graphite Materials as Anodes for Lithium-Ion Batteries
journal, January 2000

  • Cao, Fei; Barsukov, Igor V.; Bang, Hyun Joo
  • Journal of The Electrochemical Society, Vol. 147, Issue 10
  • DOI: 10.1149/1.1393942

Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries
journal, November 2016

  • Xu, Jing; Hu, Enyuan; Nordlund, Dennis
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 46
  • DOI: 10.1021/acsami.6b11111

Changing Established Belief on Capacity Fade Mechanisms: Thorough Investigation of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM111) under High Voltage Conditions
journal, January 2017

  • Kasnatscheew, Johannes; Evertz, Marco; Streipert, Benjamin
  • The Journal of Physical Chemistry C, Vol. 121, Issue 3
  • DOI: 10.1021/acs.jpcc.6b11746

Examining the Solid Electrolyte Interphase on Binder-Free Graphite Electrodes
journal, January 2009

  • Xiao, Ang; Yang, Li; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 156, Issue 4
  • DOI: 10.1149/1.3078020

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
journal, January 2013

  • Nie, Mengyun; Chalasani, Dinesh; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 3, p. 1257-1267
  • DOI: 10.1021/jp3118055

A stable lithium-rich surface structure for lithium-rich layered cathode materials
journal, November 2016

  • Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13598

Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3–4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes
journal, September 2016

  • Gilbert, James A.; Bareño, Javier; Spila, Timothy
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0081701jes

Effects of Surface Coating on Gas Evolution and Impedance Growth at Li[Ni x Mn y Co 1-x-y ]O 2 Positive Electrodes in Li-Ion Cells
journal, January 2017

  • Xiong, D. J.; Hynes, T.; Ellis, L. D.
  • Journal of The Electrochemical Society, Vol. 164, Issue 13
  • DOI: 10.1149/2.0991713jes

Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
journal, March 2015

  • Liu, Wen; Oh, Pilgun; Liu, Xien
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201409262

Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
journal, June 2017


Nanostructured high-energy cathode materials for advanced lithium batteries
journal, October 2012

  • Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3435

Rate capability of graphite materials as negative electrodes in lithium-ion capacitors
journal, March 2010


Photoelectron Spectroscopy for Lithium Battery Interface Studies
journal, November 2015

  • Philippe, B.; Hahlin, M.; Edström, K.
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0051602jes

Correlation of Electrolyte Volume and Electrochemical Performance in Lithium-Ion Pouch Cells with Graphite Anodes and NMC532 Cathodes
journal, January 2017

  • An, Seong Jin; Li, Jianlin; Mohanty, Debasish
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.1131706jes

Advanced Concentration Gradient Cathode Material with Two-Slope for High-Energy and Safe Lithium Batteries
journal, June 2015

  • Lim, Byung-Beom; Yoon, Sung-Jun; Park, Kang-Joon
  • Advanced Functional Materials, Vol. 25, Issue 29
  • DOI: 10.1002/adfm.201501430

Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges
journal, January 2015

  • Rozier, Patrick; Tarascon, Jean Marie
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0111514jes

Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Structure of Graphite
journal, February 1962


Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries
journal, June 2014


Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods
journal, May 2012


Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials
journal, July 2017

  • Radin, Maxwell D.; Hy, Sunny; Sina, Mahsa
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201602888

Calendar aging of a 250 kW/500 kWh Li-ion battery deployed for the grid storage application
journal, December 2017


Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

Electrochemically lithiated graphite characterised by photoelectron spectroscopy
journal, June 2003


Combined In Situ Raman and IR Microscopy at the Interface of a Single Graphite Particle with Ethylene Carbonate/Dimethyl Carbonate
journal, January 2014

  • Lanz, Patrick; Novák, Petr
  • Journal of The Electrochemical Society, Vol. 161, Issue 10
  • DOI: 10.1149/2.0021410jes

Reduced Graphene Oxide Paper Electrode: Opposing Effect of Thermal Annealing on Li and Na Cyclability
journal, November 2014

  • David, Lamuel; Singh, Gurpreet
  • The Journal of Physical Chemistry C, Vol. 118, Issue 49
  • DOI: 10.1021/jp5080847

Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes
journal, May 2017


Enabling High-Energy, High-Voltage Lithium-Ion Cells: Standardization of Coin-Cell Assembly, Electrochemical Testing, and Evaluation of Full Cells
journal, January 2016

  • Long, Brandon R.; Rinaldo, Steven G.; Gallagher, Kevin G.
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0691614jes

Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in 1.2 M LiPF 6 /EC:EMC Electrolyte
journal, September 2005

  • Zhuang, Guorong V.; Xu, Kang; Yang, Hui
  • The Journal of Physical Chemistry B, Vol. 109, Issue 37
  • DOI: 10.1021/jp052474w

Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode
journal, January 2015

  • Dees, Dennis W.; Abraham, Daniel P.; Lu, Wenquan
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0231504jes

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites
journal, January 2012

  • Ridgway, Paul; Zheng, Honghe; Bello, A. F.
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.006205jes

Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

Electrolyte Volume Effects on Electrochemical Performance and Solid Electrolyte Interphase in Si-Graphite/NMC Lithium-Ion Pouch Cells
journal, May 2017

  • An, Seong Jin; Li, Jianlin; Daniel, Claus
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 22
  • DOI: 10.1021/acsami.7b03617

Analysis of the Chemical Composition of the Passive Film on Li-Ion Battery Anodes Using Attentuated Total Reflection Infrared Spectroscopy
journal, January 2003

  • Zhuang, Guorong V.; Ross, Philip N.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 7
  • DOI: 10.1149/1.1575594

Oxygen Release and Its Effect on the Cycling Stability of LiNi x Mn y Co z O 2 (NMC) Cathode Materials for Li-Ion Batteries
journal, January 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0021707jes

Study of the Failure Mechanisms of LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode Material for Lithium Ion Batteries
journal, January 2015

  • Li, Jing; Downie, Laura E.; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.1011507jes

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

In situ x-ray diffraction and electrochemical studies of Li1−xNiO2
journal, December 1993


Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries
journal, May 2016

  • Vissers, Daniel R.; Chen, Zonghai; Shao, Yuyan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 22
  • DOI: 10.1021/acsami.6b02061