skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dislocation-driven growth of two-dimensional lateral quantum-well superlattices

Abstract

Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Density functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [2]; ORCiD logo [3]
  1. Univ. of Chinese Academy of Science, Beijing (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of Chinese Academy of Science, Beijing (China); Vanderbilt Univ., Nashville, TN (United States)
  3. National Univ. of Singapore (Singapore)
  4. Univ. of Chinese Academy of Science, Beijing (China)
  5. Nanyang Technological Univ. (Singapore)
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vanderbilt Univ., Nashville, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1456787
Alternate Identifier(s):
OSTI ID: 1597882
Grant/Contract Number:  
AC05-00OR22725; FG02-09ER46554
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 3; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Zhou, Wu, Zhang, Yu -Yang, Chen, Jianyi, Li, Dongdong, Zhou, Jiadong, Liu, Zheng, Chisholm, Matthew F., Pantelides, Sokrates T., and Loh, Kian Ping. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices. United States: N. p., 2018. Web. doi:10.1126/sciadv.aap9096.
Zhou, Wu, Zhang, Yu -Yang, Chen, Jianyi, Li, Dongdong, Zhou, Jiadong, Liu, Zheng, Chisholm, Matthew F., Pantelides, Sokrates T., & Loh, Kian Ping. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices. United States. doi:10.1126/sciadv.aap9096.
Zhou, Wu, Zhang, Yu -Yang, Chen, Jianyi, Li, Dongdong, Zhou, Jiadong, Liu, Zheng, Chisholm, Matthew F., Pantelides, Sokrates T., and Loh, Kian Ping. Fri . "Dislocation-driven growth of two-dimensional lateral quantum-well superlattices". United States. doi:10.1126/sciadv.aap9096. https://www.osti.gov/servlets/purl/1456787.
@article{osti_1456787,
title = {Dislocation-driven growth of two-dimensional lateral quantum-well superlattices},
author = {Zhou, Wu and Zhang, Yu -Yang and Chen, Jianyi and Li, Dongdong and Zhou, Jiadong and Liu, Zheng and Chisholm, Matthew F. and Pantelides, Sokrates T. and Loh, Kian Ping},
abstractNote = {Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Density functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.},
doi = {10.1126/sciadv.aap9096},
journal = {Science Advances},
number = 3,
volume = 4,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy
journal, March 2010

  • Krivanek, Ondrej L.; Chisholm, Matthew F.; Nicolosi, Valeria
  • Nature, Vol. 464, Issue 7288
  • DOI: 10.1038/nature08879

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers
journal, June 2013

  • Najmaei, Sina; Liu, Zheng; Zhou, Wu
  • Nature Materials, Vol. 12, Issue 8, p. 754-759
  • DOI: 10.1038/nmat3673

Band offsets and heterostructures of two-dimensional semiconductors
journal, January 2013

  • Kang, Jun; Tongay, Sefaattin; Zhou, Jian
  • Applied Physics Letters, Vol. 102, Issue 1
  • DOI: 10.1063/1.4774090

Projector augmented-wave method
journal, December 1994


Predicting Dislocations and Grain Boundaries in Two-Dimensional Metal-Disulfides from the First Principles
journal, December 2012

  • Zou, Xiaolong; Liu, Yuanyue; Yakobson, Boris I.
  • Nano Letters, Vol. 13, Issue 1, p. 253-258
  • DOI: 10.1021/nl3040042

Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface
journal, July 2015


Superlattice and Negative Differential Conductivity in Semiconductors
journal, January 1970

  • Esaki, L.; Tsu, R.
  • IBM Journal of Research and Development, Vol. 14, Issue 1
  • DOI: 10.1147/rd.141.0061

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Vertical and in-plane heterostructures from WS2/MoS2 monolayers
journal, September 2014

  • Gong, Yongji; Lin, Junhao; Wang, Xingli
  • Nature Materials, Vol. 13, Issue 12, p. 1135-1142
  • DOI: 10.1038/nmat4091

Two-Step Growth of Two-Dimensional WSe 2 /MoSe 2 Heterostructures
journal, August 2015


Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices
journal, August 2017


Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


Single Atom Microscopy
journal, November 2012


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Recent Advances in Two-Dimensional Materials beyond Graphene
journal, October 2015


Quantum spin Hall states in graphene interacting with WS 2 or WSe 2
journal, December 2014

  • Kaloni, T. P.; Kou, L.; Frauenheim, T.
  • Applied Physics Letters, Vol. 105, Issue 23
  • DOI: 10.1063/1.4903895

In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes
journal, January 2013


Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges
journal, January 2014


Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions
journal, September 2014

  • Duan, Xidong; Wang, Chen; Shaw, Jonathan C.
  • Nature Nanotechnology, Vol. 9, Issue 12, p. 1024-1030
  • DOI: 10.1038/nnano.2014.222

Growth of nanowire superlattice structures for nanoscale photonics and electronics
journal, February 2002

  • Gudiksen, Mark S.; Lauhon, Lincoln J.; Wang, Jianfang
  • Nature, Vol. 415, Issue 6872, p. 617-620
  • DOI: 10.1038/415617a

Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials
journal, December 1993

  • Hicks, L. D.; Harman, T. C.; Dresselhaus, M. S.
  • Applied Physics Letters, Vol. 63, Issue 23
  • DOI: 10.1063/1.110207

Lateral Epitaxy of Atomically Sharp WSe 2 /WS 2 Heterojunctions on Silicon Dioxide Substrates
journal, October 2016


Parallel Stitching of 2D Materials
journal, January 2016


Quantum Cascade Laser
journal, April 1994


A roadmap for graphene
journal, October 2012

  • Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.
  • Nature, Vol. 490, Issue 7419
  • DOI: 10.1038/nature11458

Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
journal, July 2015

  • Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8749

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

High-precision sampling for Brillouin-zone integration in metals
journal, August 1989


Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches
journal, March 2017

  • Chen, Lingxiu; He, Li; Wang, Hui Shan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14703

Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

Intrinsic Structural Defects in Monolayer Molybdenum Disulfide
journal, May 2013

  • Zhou, Wu; Zou, Xiaolong; Najmaei, Sina
  • Nano Letters, Vol. 13, Issue 6, p. 2615-2622
  • DOI: 10.1021/nl4007479

Tunneling in a finite superlattice
journal, June 1973

  • Tsu, R.; Esaki, L.
  • Applied Physics Letters, Vol. 22, Issue 11
  • DOI: 10.1063/1.1654509

Quantitative measurement of displacement and strain fields from HREM micrographs
journal, August 1998


Modulation Doping of GaAs/AlGaAs Core–Shell Nanowires With Effective Defect Passivation and High Electron Mobility
journal, January 2015

  • Boland, Jessica L.; Conesa-Boj, Sonia; Parkinson, Patrick
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504566t

Properties of Individual Dopant Atoms in Single-Layer MoS 2 : Atomic Structure, Migration, and Enhanced Reactivity
journal, February 2014

  • Lin, Yung-Chang; Dumcenco, Dumitru O.; Komsa, Hannu-Pekka
  • Advanced Materials, Vol. 26, Issue 18
  • DOI: 10.1002/adma.201304985

Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors
journal, August 2014

  • Huang, Chunming; Wu, Sanfeng; Sanchez, Ana M.
  • Nature Materials, Vol. 13, Issue 12, p. 1096-1101
  • DOI: 10.1038/nmat4064

Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems
journal, June 1997