DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes

Abstract

Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stability and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.

Authors:
 [1];  [1];  [2];  [2];  [2];  [2];  [2]
  1. National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); AECOM Corporation, Pittsburgh, PA (United States)
  2. National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
Publication Date:
Research Org.:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1455428
Alternate Identifier(s):
OSTI ID: 1495734
Report Number(s):
CONTR-PUB-398
Journal ID: ISSN 0376-7388; PII: S0376738817316873
Grant/Contract Number:  
FE0004000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Membrane Science
Additional Journal Information:
Journal Volume: 545; Journal Issue: C; Journal ID: ISSN 0376-7388
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Ion gel; Cross-linked poly(ethylene oxide); Carbon dioxide permeability; Gas separation membrane; Solid electrolyte

Citation Formats

Kusuma, Victor A., Macala, Megan K., Liu, Jian, Marti, Anne M., Hirsch, Rebecca J., Hill, Lawrence J., and Hopkinson, David. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes. United States: N. p., 2018. Web. doi:10.1016/j.memsci.2017.09.086.
Kusuma, Victor A., Macala, Megan K., Liu, Jian, Marti, Anne M., Hirsch, Rebecca J., Hill, Lawrence J., & Hopkinson, David. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes. United States. https://doi.org/10.1016/j.memsci.2017.09.086
Kusuma, Victor A., Macala, Megan K., Liu, Jian, Marti, Anne M., Hirsch, Rebecca J., Hill, Lawrence J., and Hopkinson, David. Tue . "Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes". United States. https://doi.org/10.1016/j.memsci.2017.09.086. https://www.osti.gov/servlets/purl/1455428.
@article{osti_1455428,
title = {Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes},
author = {Kusuma, Victor A. and Macala, Megan K. and Liu, Jian and Marti, Anne M. and Hirsch, Rebecca J. and Hill, Lawrence J. and Hopkinson, David},
abstractNote = {Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stability and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.},
doi = {10.1016/j.memsci.2017.09.086},
journal = {Journal of Membrane Science},
number = C,
volume = 545,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Combination of ionic liquids with membrane technology: A new approach for CO2 separation
journal, January 2016


Playing with ionic liquid mixtures to design engineered CO 2 separation membranes
journal, January 2014

  • Tomé, Liliana C.; Florindo, Catarina; Freire, Carmen S. R.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 32
  • DOI: 10.1039/C4CP01434K

High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes
journal, September 2008


Preparation of supported ionic liquid membranes: Influence of the ionic liquid immobilization method on their operational stability
journal, September 2009

  • Hernández-Fernández, F. J.; de los Ríos, A. P.; Tomás-Alonso, F.
  • Journal of Membrane Science, Vol. 341, Issue 1-2
  • DOI: 10.1016/j.memsci.2009.06.003

The bubble point of supported ionic liquid membranes using flat sheet supports
journal, October 2014


Poly(ionic liquid)s: An update
journal, July 2013


Low glass transition temperature poly(ionic liquid) prepared from a new quaternary ammonium cationic monomer
journal, May 2015

  • He, Hongkun; Chung, Heesung; Roth, Elliot
  • Polymers for Advanced Technologies, Vol. 26, Issue 7
  • DOI: 10.1002/pat.3529

Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s
journal, September 2015


Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes
journal, August 2007

  • Bara, Jason E.; Lessmann, Sonja; Gabriel, Christopher J.
  • Industrial & Engineering Chemistry Research, Vol. 46, Issue 16
  • DOI: 10.1021/ie0704492

Pyrrolidinium-based polymeric ionic liquid materials: New perspectives for CO2 separation membranes
journal, February 2013


Polymeric ionic liquid-based membranes: Influence of polycation variation on gas transport and CO2 selectivity properties
journal, July 2015


Phosphonium-based poly(Ionic liquid) membranes: The effect of cation alkyl chain length on light gas separation properties and Ionic conductivity
journal, January 2016


CO2/light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content
journal, April 2012


CO 2 Separation from Flue Gas Using Polyvinyl-(Room Temperature Ionic Liquid)–Room Temperature Ionic Liquid Composite Membranes
journal, August 2011

  • Li, Pei; Pramoda, K. P.; Chung, Tai-Shung
  • Industrial & Engineering Chemistry Research, Vol. 50, Issue 15
  • DOI: 10.1021/ie2005884

Cross-Linked Polymer Electrolytes for Li-Based Batteries: From Solid to Gel Electrolytes
journal, September 2016

  • Chaudoy, Victor; Ghamouss, Fouad; Luais, Erwann
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 37
  • DOI: 10.1021/acs.iecr.6b02287

Ionic liquids as electrolytes
journal, August 2006


Gas Permeation and Diffusion in Cross-Linked Poly(ethylene glycol diacrylate)
journal, May 2006

  • Lin, Haiqing; Freeman, Benny D.
  • Macromolecules, Vol. 39, Issue 10
  • DOI: 10.1021/ma051686o

Influence of chemical structure of short chain pendant groups on gas transport properties of cross-linked poly(ethylene oxide) copolymers
journal, February 2009

  • Kusuma, Victor A.; Freeman, Benny D.; Borns, Matthew A.
  • Journal of Membrane Science, Vol. 327, Issue 1-2
  • DOI: 10.1016/j.memsci.2008.11.022

Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases
journal, August 2008


Gas solubility, diffusivity and permeability in poly(ethylene oxide)
journal, August 2004


The Effect of Cross-Linking on Gas Permeability in Cross-Linked Poly(Ethylene Glycol Diacrylate)
journal, October 2005

  • Lin, Haiqing; Kai, Teruhiko; Freeman, Benny D.
  • Macromolecules, Vol. 38, Issue 20
  • DOI: 10.1021/ma0510136

ABA-triblock copolymer ion gels for CO2 separation applications
journal, December 2012


Gas transport properties of Pebax®/room temperature ionic liquid gel membranes
journal, September 2012

  • Bernardo, Paola; Jansen, Johannes Carolus; Bazzarelli, Fabio
  • Separation and Purification Technology, Vol. 97
  • DOI: 10.1016/j.seppur.2012.02.041

Carbon Dioxide Separation Using a High-toughness Ion Gel with a Tetra-armed Polymer Network
journal, January 2015

  • Fujii, Kenta; Makino, Takashi; Hashimoto, Kei
  • Chemistry Letters, Vol. 44, Issue 1
  • DOI: 10.1246/cl.140795

Elastic free-standing RTIL composite membranes for CO2/N2 separation based on sphere-forming triblock/diblock copolymer blends
journal, August 2016


High-performance ion gel with tetra-PEG network
journal, January 2012

  • Fujii, Kenta; Asai, Hanako; Ueki, Takeshi
  • Soft Matter, Vol. 8, Issue 6
  • DOI: 10.1039/C2SM07119C

PEGylated Imidazolium Ionic Liquid Electrolytes: Thermophysical and Electrochemical Properties
journal, December 2010

  • Ganapatibhotla, Lalitha V. N. R.; Zheng, Jianping; Roy, Dipankar
  • Chemistry of Materials, Vol. 22, Issue 23
  • DOI: 10.1021/cm102263s

Structural effects of polyethers and ionic liquids in their binary mixtures on lower critical solution temperature liquid-liquid phase separation
journal, January 2011

  • Kodama, Koichi; Tsuda, Ryohei; Niitsuma, Kazuyuki
  • Polymer Journal, Vol. 43, Issue 3
  • DOI: 10.1038/pj.2010.140

Solvatochromic Probe Response within Ionic Liquids and Their Equimolar Mixtures with Tetraethylene Glycol
journal, September 2014

  • Rai, Rewa; Pandey, Siddharth
  • The Journal of Physical Chemistry B, Vol. 118, Issue 38
  • DOI: 10.1021/jp504165a

15th anniversary of polymerised ionic liquids
journal, August 2014


Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids
journal, September 2016


Polymers in Ionic Liquids: Dawn of Neoteric Solvents and Innovative Materials
journal, January 2012

  • Ueki, Takeshi; Watanabe, Masayoshi
  • Bulletin of the Chemical Society of Japan, Vol. 85, Issue 1
  • DOI: 10.1246/bcsj.20110225

Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials
journal, March 2009


Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte
journal, April 2003

  • Nishida, Tetsuo; Tashiro, Yasutaka; Yamamoto, Masashi
  • Journal of Fluorine Chemistry, Vol. 120, Issue 2, p. 135-141
  • DOI: 10.1016/S0022-1139(02)00322-6

Unusual Lower Critical Solution Temperature Phase Behavior of Poly(ethylene oxide) in Ionic Liquids
journal, April 2012

  • Lee, Hau-Nan; Newell, Nakisha; Bai, Zhifeng
  • Macromolecules, Vol. 45, Issue 8
  • DOI: 10.1021/ma300335p

Extended scale for the hydrogen-bond basicity of ionic liquids
journal, January 2014

  • Cláudio, Ana Filipa M.; Swift, Lorna; Hallett, Jason P.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 14
  • DOI: 10.1039/c3cp55285c

Viscoelastic characteristics of UV polymerized poly(ethylene glycol) diacrylate networks with varying extents of crosslinking
journal, January 2006

  • Kalakkunnath, Sumod; Kalika, Douglass S.; Lin, Haiqing
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 44, Issue 15
  • DOI: 10.1002/polb.20873

Structure-permeability relationships in silicone polymers
journal, June 1987

  • Stern, S. A.; Shah, V. M.; Hardy, B. J.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 25, Issue 6
  • DOI: 10.1002/polb.1987.090250607

Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes
journal, April 2010

  • Reijerkerk, Sander R.; Knoef, Michel H.; Nijmeijer, Kitty
  • Journal of Membrane Science, Vol. 352, Issue 1-2
  • DOI: 10.1016/j.memsci.2010.02.008

Gas permeability of cross-linked poly(ethylene-oxide) based on poly(ethylene glycol) dimethacrylate and a miscible siloxane co-monomer
journal, November 2010


Thiol-Ene Click Chemistry
journal, February 2010

  • Hoyle, Charles E.; Bowman, Christopher N.
  • Angewandte Chemie International Edition, Vol. 49, Issue 9, p. 1540-1573
  • DOI: 10.1002/anie.200903924

Transport and structural characteristics of crosslinked poly(ethylene oxide) rubbers
journal, May 2006


Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes
journal, December 2003


Ionic liquids for solid-state electrolytes and electrosynthesis
journal, February 2014


Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes
journal, February 2006


Ionogels, ionic liquid based hybrid materials
journal, January 2011

  • Le Bideau, Jean; Viau, Lydie; Vioux, André
  • Chem. Soc. Rev., Vol. 40, Issue 2
  • DOI: 10.1039/C0CS00059K

Improving CO 2 separation performance of thin film composite hollow fiber with Pebax®1657/ionic liquid gel membranes
journal, September 2017


Anion Effects on Gas Solubility in Ionic Liquids
journal, April 2005

  • Anthony, Jennifer L.; Anderson, Jessica L.; Maginn, Edward J.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 13
  • DOI: 10.1021/jp046404l

The upper bound revisited
journal, July 2008


Ionogels based on ionic liquids as potential highly conductive solid state electrolytes
journal, February 2013


Works referencing / citing this record:

Synthesis of P123‐Templated and DVB‐Cross‐linked Meso‐macroporous Poly (ionic liquids) with High‐Performance Alkylation
journal, January 2020

  • Sha, Xiao; Sheng, Xiaoli; Zhou, Yuming
  • Applied Organometallic Chemistry, Vol. 34, Issue 4
  • DOI: 10.1002/aoc.5460

Silicone Elastomers with High‐Permittivity Ionic Liquids Loading
journal, August 2019


Synthesis of crosslinked PEG/IL blend membrane via one‐pot thiol–ene/epoxy chemistry
journal, January 2020


Bis-imidazolium based poly(phenylene oxide) anion exchange membranes for fuel cells: the effect of cross-linking
journal, January 2019

  • Lin, Bencai; Xu, Fei; Chu, Fuqiang
  • Journal of Materials Chemistry A, Vol. 7, Issue 21
  • DOI: 10.1039/c9ta00028c

A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors
journal, January 2020

  • Hong, Shu; Yuan, Yang; Liu, Chaozheng
  • Journal of Materials Chemistry C, Vol. 8, Issue 2
  • DOI: 10.1039/c9tc05913j

“Sweet” ionic liquid gels: materials for sweetening of fuels
journal, January 2018

  • Billeci, Floriana; D'Anna, Francesca; Gunaratne, H. Q. Nimal
  • Green Chemistry, Vol. 20, Issue 18
  • DOI: 10.1039/c8gc01615a