DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal

Abstract

Understanding ionic transport across interfaces between dissimilar materials and the intrinsic chemical stability of such interfaces is a fundamental challenge spanning many disciplines and is of particular importance for designing conductive and stable solid electrolytes for solid-state Li-ion batteries. In this work, we establish a surface science-based approach for assessing the intrinsic stability of oxide materials in contact with Li metal. Through a combination of experimental and computational insights, using Nb-doped SrTiO3 (Nb/STO) single crystals as a model system, we were able to understand the impact of crystallographic orientation and surface morphology on the extent of the chemical reactions that take place between surface Nb, Ti, and Sr upon reaction with Li. By expanding our approach to investigate the intrinsic stability of the technologically relevant, polycrystalline Nb-doped lithium lanthanum zirconium oxide (Li6.5La3Zr1.5Nb0.5O12) system, we found that this material reacts with Li metal through the reduction of Nb, similar to that observed for Nb/STO. These results clearly demonstrate the feasibility of our approach to assess the intrinsic (in)stability of oxide materials for solid-state batteries and point to new strategies for understanding the performance of such systems.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [2];  [2]; ORCiD logo [1];  [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1455046
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 10; Journal Issue: 20; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Li metal; buried interface; model system; reactivity; solid electrolytes; solid-state batteries; surface science

Citation Formats

Connell, Justin G., Zhu, Yisi, Zapol, Peter, Tepavcevic, Sanja, Sharafi, Asma, Sakamoto, Jeff, Curtiss, Larry A., Fong, Dillon D., Freeland, John W., and Markovic, Nenad M. Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal. United States: N. p., 2018. Web. doi:10.1021/acsami.8b03078.
Connell, Justin G., Zhu, Yisi, Zapol, Peter, Tepavcevic, Sanja, Sharafi, Asma, Sakamoto, Jeff, Curtiss, Larry A., Fong, Dillon D., Freeland, John W., & Markovic, Nenad M. Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal. United States. https://doi.org/10.1021/acsami.8b03078
Connell, Justin G., Zhu, Yisi, Zapol, Peter, Tepavcevic, Sanja, Sharafi, Asma, Sakamoto, Jeff, Curtiss, Larry A., Fong, Dillon D., Freeland, John W., and Markovic, Nenad M. Mon . "Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal". United States. https://doi.org/10.1021/acsami.8b03078. https://www.osti.gov/servlets/purl/1455046.
@article{osti_1455046,
title = {Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal},
author = {Connell, Justin G. and Zhu, Yisi and Zapol, Peter and Tepavcevic, Sanja and Sharafi, Asma and Sakamoto, Jeff and Curtiss, Larry A. and Fong, Dillon D. and Freeland, John W. and Markovic, Nenad M.},
abstractNote = {Understanding ionic transport across interfaces between dissimilar materials and the intrinsic chemical stability of such interfaces is a fundamental challenge spanning many disciplines and is of particular importance for designing conductive and stable solid electrolytes for solid-state Li-ion batteries. In this work, we establish a surface science-based approach for assessing the intrinsic stability of oxide materials in contact with Li metal. Through a combination of experimental and computational insights, using Nb-doped SrTiO3 (Nb/STO) single crystals as a model system, we were able to understand the impact of crystallographic orientation and surface morphology on the extent of the chemical reactions that take place between surface Nb, Ti, and Sr upon reaction with Li. By expanding our approach to investigate the intrinsic stability of the technologically relevant, polycrystalline Nb-doped lithium lanthanum zirconium oxide (Li6.5La3Zr1.5Nb0.5O12) system, we found that this material reacts with Li metal through the reduction of Nb, similar to that observed for Nb/STO. These results clearly demonstrate the feasibility of our approach to assess the intrinsic (in)stability of oxide materials for solid-state batteries and point to new strategies for understanding the performance of such systems.},
doi = {10.1021/acsami.8b03078},
journal = {ACS Applied Materials and Interfaces},
number = 20,
volume = 10,
place = {United States},
year = {Mon Apr 30 00:00:00 EDT 2018},
month = {Mon Apr 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) LEED and (b) AFM images of an etched and annealed STO(001) surface. (c) AFM image of the same STO(001) surface after Li deposition. Scale bars are 1 μm and height scale units are nm. (d-f) XPS core level spectra before (red) and after (blue) Li deposition showmore » (d) the clear presence of both Li metal and Li-O species, (e) the reduction of Ti4+ to Ti3+ and Ti2+ and (f) the reduction of Nb5+ to Nb4+ after Li deposition. Increased noise in the Ti 2p and Nb 3d core level spectra after Li deposition is due to signal attenuation by the Li overlayer.« less

Save / Share:

Works referenced in this record:

The missing memristor found
journal, May 2008

  • Strukov, Dmitri B.; Snider, Gregory S.; Stewart, Duncan R.
  • Nature, Vol. 453, Issue 7191
  • DOI: 10.1038/nature06932

Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers
journal, January 2016

  • Irvine, John T. S.; Neagu, Dragos; Verbraeken, Maarten C.
  • Nature Energy, Vol. 1, Issue 1
  • DOI: 10.1038/nenergy.2015.14

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


The energy-storage frontier: Lithium-ion batteries and beyond
journal, November 2015

  • Crabtree, George; Kócs, Elizabeth; Trahey, Lynn
  • MRS Bulletin, Vol. 40, Issue 12
  • DOI: 10.1557/mrs.2015.259

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Lithium-Ion Batteries: Solid Electrolyte: the Key for High-Voltage Lithium Batteries (Adv. Energy Mater. 4/2015)
journal, February 2015

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201570018

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts
journal, November 2010

  • Oudenhoven, Jos F. M.; Baggetto, Loïc.; Notten, Peter H. L.
  • Advanced Energy Materials, Vol. 1, Issue 1
  • DOI: 10.1002/aenm.201000002

Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte
journal, January 2017


Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes
journal, July 2017

  • Porz, Lukas; Swamy, Tushar; Sheldon, Brian W.
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201701003

Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution
journal, June 2014

  • Chang, Seo Hyoung; Danilovic, Nemanja; Chang, Kee-Chul
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5191

Energy and fuels from electrochemical interfaces
journal, December 2016

  • Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4738

Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes
journal, October 2013

  • Hartmann, Pascal; Leichtweiss, Thomas; Busche, Martin R.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 41
  • DOI: 10.1021/jp4051275

Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy
journal, October 2015


Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li 10 GeP 2 S 12 at the Lithium Metal Anode
journal, March 2016


Evidence of the chemical stability of the garnet-type solid electrolyte Li5La3Ta2O12 towards lithium by a surface science approach
journal, October 2017


Interfacial Stability of Li Metal–Solid Electrolyte Elucidated via in Situ Electron Microscopy
journal, October 2016


In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries
journal, May 2016


Universal Ti-rich termination of atomically flat SrTiO3 (001), (110), and (111) surfaces
journal, January 2011

  • Biswas, A.; Rossen, P. B.; Yang, C. -H.
  • Applied Physics Letters, Vol. 98, Issue 5
  • DOI: 10.1063/1.3549860

Controlling the Relative Areas of Photocathodic and Photoanodic Terraces on the SrTiO 3 (111) Surface
journal, July 2016


Controlling the termination and photochemical reactivity of the SrTiO 3 (110) surface
journal, January 2017

  • Zhu, Yisi; Salvador, Paul A.; Rohrer, Gregory S.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 11
  • DOI: 10.1039/C6CP08608J

Atomically flat SrO-terminated SrTiO3(001) substrate
journal, October 2009

  • Bachelet, R.; Sánchez, F.; Palomares, F. J.
  • Applied Physics Letters, Vol. 95, Issue 14
  • DOI: 10.1063/1.3240869

Lithium Intercalation in Nanoporous Anatase TiO 2 Studied with XPS
journal, April 1997

  • Södergren, Sven; Siegbahn, Hans; Rensmo, Håkan
  • The Journal of Physical Chemistry B, Vol. 101, Issue 16
  • DOI: 10.1021/jp9639399

Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment
journal, August 1989

  • Choudhury, T.; Saied, S. O.; Sullivan, J. L.
  • Journal of Physics D: Applied Physics, Vol. 22, Issue 8
  • DOI: 10.1088/0022-3727/22/8/026

Engineered Mott ground state in a LaTiO3+δ/LaNiO3 heterostructure
journal, January 2016

  • Cao, Yanwei; Liu, Xiaoran; Kareev, M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10418

Orbital Reconstruction and Covalent Bonding at an Oxide Interface
journal, November 2007


Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides
journal, August 2013

  • Chien, Te Yu; Kourkoutis, Lena F.; Chakhalian, Jak
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3336

A homologous series of structures on the surface of SrTiO3(110)
journal, February 2010

  • Enterkin, James A.; Subramanian, Arun K.; Russell, Bruce C.
  • Nature Materials, Vol. 9, Issue 3
  • DOI: 10.1038/nmat2636

Lithium Insertion in Nanostructured TiO 2 (B) Architectures
journal, June 2012

  • Dylla, Anthony G.; Henkelman, Graeme; Stevenson, Keith J.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300176y

Lithium adsorption on the SrTiO 3 (100) surface
journal, July 2007


Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature
journal, April 2013


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ab initiomolecular dynamics for liquid metals
journal, January 1993


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Projector augmented-wave method
journal, December 1994


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Lithium Coordination Sites in Li x TiO 2 (B): A Structural and Computational Study
journal, December 2010

  • Armstrong, A. Robert; Arrouvel, Corinne; Gentili, Valentina
  • Chemistry of Materials, Vol. 22, Issue 23
  • DOI: 10.1021/cm102589x

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Surface structure of SrTiO3(100)
journal, September 2003


Reconstructions on the polar Sr Ti O 3 (110) surface: Analysis using STM, LEED, and AES
journal, June 2008


Works referencing / citing this record:

Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal
journal, January 2019

  • Zhu, Yisi; Connell, Justin G.; Tepavcevic, Sanja
  • Advanced Energy Materials, Vol. 9, Issue 12
  • DOI: 10.1002/aenm.201803440

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.