Demagnetization of Nd2Fe14B, Pr2Fe14B, and Sm2Co17 Permanent Magnets in Spallation Irradiation Fields
- Brookhaven National Lab. (BNL), Upton, NY (United States)
- Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
- Michigan State Univ., East Lansing, MI (United States)
Prompted by the need for radiation-resistant permanent magnets for insertion devices (IDs) of high-brilliance next-generation synchrotrons such as the National Synchrotron Light Source II, the demagnetization of Nd2Fe14B and Pr2Fe14B was studied after exposure to a mixed irradiating field. Degradation and damage of the permanent magnetic material by components of electromagnetic showers induced in magnets by intense high-energy electron beams will alter the magnetic field structure of the IDs. Plate-like Nd2Fe14B magnets were irradiated to 1.8 Grad dose and were evaluated against Pr2Fe14B magnets irradiated to a lower dose of 20 Mrad. In addition, annular Sm2Co17 and Nd2Fe14B magnets integrated within a ferrofluidic feedthrough (FFFT) rotary seal were also irradiated to dose levels of 2 Grad for Sm2Co17 and 20 Mrad for Nd2Fe14B. Post-irradiation measurements of the magnetic intensity revealed that severe demagnetization exceeding 85% occurs in Nd2Fe14B magnets after only 50 Mrad dose and over 87% for Pr2Fe14B after 10 Mrad dose. The annular-shaped Sm2Co17 magnets of the FFFTs were almost insensitive to irradiation up to a dose of 2 Grad. Annular-shaped Nd2Fe14B magnets also showed resistance to demagnetization, a direct consequence of the annular shape which is characterized by the removal of the stronger demagnetizing field present at the center of a disk-like magnet. As a result, the sensitivity of boron-based permanent magnets to neutron energy (thermal versus fast) was also assessed via specifically designed experiments and discussed.
- Research Organization:
- Brookhaven National Laboratory (BNL), Upton, NY (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Nuclear Physics (NP)
- Grant/Contract Number:
- SC0012704
- OSTI ID:
- 1454811
- Report Number(s):
- BNL-205752-2018-JAAM; TRN: US1901153
- Journal Information:
- IEEE Transactions on Magnetics, Vol. 54, Issue 5; ISSN 0018-9464
- Publisher:
- Institute of Electrical and Electronics Engineers. Magnetics GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Study of the radiation damage of Nd-Fe-B permanent magnets.
MAGNETIC STRUCTURE AND MAGNETIC IMAGING OF RE{sub 2}Fe{sub 14}B (RE=Nd,Pr) PERMANENT MAGNETS. In: Experimental methods in the physical sciences. Volume 36: Magnetic imaging and its applications to materials