skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Classical-Nova Contribution to the Milky Way’s Al 26 Abundance: Exit Channel of the Key Al 25 ( p , γ ) Si 26 Resonance

Abstract

We present that classical novae are expected to contribute to the 1809-keV Galactic γ-ray emission by producing its precursor 26Al, but the yield depends on the thermonuclear rate of the unmeasured 25Al(p,γ) 26Si reaction. Using the β decay of 26P to populate the key J π=3 + resonance in this reaction, we report the first evidence for the observation of its exit channel via a 1741.6±0.6(stat)±0.3(syst) keV primary γ ray, where the uncertainties are statistical and systematic, respectively. By combining the measured γ-ray energy and intensity with other experimental data on 26Si, we find the center-of-mass energy and strength of the resonance to be E r=414.9±0.6(stat)±0.3(syst)±0.6(lit.) keV and ωγ=23±6(stat)$$+11\atop{-10}$$(lit.) meV, respectively, where the last uncertainties are from adopted literature data. Finally, we use hydrodynamic nova simulations to model 26Al production showing that these measurements effectively eliminate the dominant experimental nuclear-physics uncertainty and we estimate that novae may contribute up to 30% of the Galactic 26Al.

Authors:
 [1];  [2];  [3];  [4];  [5];  [1];  [6];  [7];  [8];  [7];  [7];  [9];  [8];  [2];  [10];  [9];  [5];  [11];  [12];  [13] more »;  [1];  [9];  [12];  [7] « less
  1. Michigan State Univ., East Lansing, MI (United States). Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory
  2. Michigan State Univ., East Lansing, MI (United States). Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory; Univ. of Washington, Seattle, WA (United States). Department of Physics
  3. Colorado School of Mines, Golden, CO (United States). Department of Physics
  4. Departament Física i Enginyeria Nuclear (UPC) and Institut d’Estudis Espacials de Catalunya (IEEC), Barcelona (Spain)
  5. Michigan State Univ., East Lansing, MI (United States). Department of Chemistry and National Superconducting Cyclotron Laboratory
  6. Michigan State Univ., East Lansing, MI (United States). Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory; Kalamazoo College, MI (United States)
  7. McMaster Univ., Hamilton, ON (Canada). Department of Physics and Astronomy
  8. Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.
  9. Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Laboratory and Joint Institute for Nuclear Astrophysics
  10. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  11. Michigan State Univ., East Lansing, MI (United States). Department of Electrical Engineering, Joint Institute for Nuclear Astrophysics and National Superconducting Cyclotron Laboratory
  12. Michigan State Univ., East Lansing, MI (United States). Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory and Joint Institute for Nuclear Astrophysics
  13. Michigan State Univ., East Lansing, MI (United States). Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory; University of Southern Indiana, Evansville, IN (United States)
Publication Date:
Research Org.:
Nuclear Science and Security Consortium, Berkeley, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1454781
Grant/Contract Number:  
NA0000979; FG02-97ER41020
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 111; Journal Issue: 23; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

Bennett, M. B., Wrede, C., Chipps, K. A., Jose, J., Liddick, S. N., Santia, M., Bowe, A., Chen, A. A., Cooper, N., Irvine, D., McNeice, E., Montes, F., Naqvi, F., Ortez, R., Pain, S. D., Pereira, J., Prokop, C., Quaglia, J., Quinn, S. J., Schwartz, S. B., Shanab, S., Simon, A., Spyrou, A., and Thiagalingam, E. Classical-Nova Contribution to the Milky Way’s Al26 Abundance: Exit Channel of the Key Al25(p,γ)Si26 Resonance. United States: N. p., 2013. Web. doi:10.1103/PhysRevLett.111.232503.
Bennett, M. B., Wrede, C., Chipps, K. A., Jose, J., Liddick, S. N., Santia, M., Bowe, A., Chen, A. A., Cooper, N., Irvine, D., McNeice, E., Montes, F., Naqvi, F., Ortez, R., Pain, S. D., Pereira, J., Prokop, C., Quaglia, J., Quinn, S. J., Schwartz, S. B., Shanab, S., Simon, A., Spyrou, A., & Thiagalingam, E. Classical-Nova Contribution to the Milky Way’s Al26 Abundance: Exit Channel of the Key Al25(p,γ)Si26 Resonance. United States. doi:10.1103/PhysRevLett.111.232503.
Bennett, M. B., Wrede, C., Chipps, K. A., Jose, J., Liddick, S. N., Santia, M., Bowe, A., Chen, A. A., Cooper, N., Irvine, D., McNeice, E., Montes, F., Naqvi, F., Ortez, R., Pain, S. D., Pereira, J., Prokop, C., Quaglia, J., Quinn, S. J., Schwartz, S. B., Shanab, S., Simon, A., Spyrou, A., and Thiagalingam, E. Wed . "Classical-Nova Contribution to the Milky Way’s Al26 Abundance: Exit Channel of the Key Al25(p,γ)Si26 Resonance". United States. doi:10.1103/PhysRevLett.111.232503. https://www.osti.gov/servlets/purl/1454781.
@article{osti_1454781,
title = {Classical-Nova Contribution to the Milky Way’s Al26 Abundance: Exit Channel of the Key Al25(p,γ)Si26 Resonance},
author = {Bennett, M. B. and Wrede, C. and Chipps, K. A. and Jose, J. and Liddick, S. N. and Santia, M. and Bowe, A. and Chen, A. A. and Cooper, N. and Irvine, D. and McNeice, E. and Montes, F. and Naqvi, F. and Ortez, R. and Pain, S. D. and Pereira, J. and Prokop, C. and Quaglia, J. and Quinn, S. J. and Schwartz, S. B. and Shanab, S. and Simon, A. and Spyrou, A. and Thiagalingam, E.},
abstractNote = {We present that classical novae are expected to contribute to the 1809-keV Galactic γ-ray emission by producing its precursor 26Al, but the yield depends on the thermonuclear rate of the unmeasured 25Al(p,γ)26Si reaction. Using the β decay of 26P to populate the key Jπ=3+ resonance in this reaction, we report the first evidence for the observation of its exit channel via a 1741.6±0.6(stat)±0.3(syst) keV primary γ ray, where the uncertainties are statistical and systematic, respectively. By combining the measured γ-ray energy and intensity with other experimental data on 26Si, we find the center-of-mass energy and strength of the resonance to be Er=414.9±0.6(stat)±0.3(syst)±0.6(lit.) keV and ωγ=23±6(stat)$+11\atop{-10}$(lit.) meV, respectively, where the last uncertainties are from adopted literature data. Finally, we use hydrodynamic nova simulations to model 26Al production showing that these measurements effectively eliminate the dominant experimental nuclear-physics uncertainty and we estimate that novae may contribute up to 30% of the Galactic 26Al.},
doi = {10.1103/PhysRevLett.111.232503},
journal = {Physical Review Letters},
number = 23,
volume = 111,
place = {United States},
year = {2013},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Radioactive 26Al in the galaxy: observations versus theory
journal, March 1996


The Cosmic Abundances of Potassium, Uranium, and Thorium and the heat Balances of the Earth, the Moon, and mars
journal, March 1955

  • Urey, H. C.
  • Proceedings of the National Academy of Sciences, Vol. 41, Issue 3
  • DOI: 10.1073/pnas.41.3.127

High-precision ( p , t ) reaction to determine Al 25 ( p , γ ) Si 26 reaction rates
journal, August 2010


Lowest l = 0 proton resonance in Si 26 and implications for nucleosynthesis of Al 26
journal, March 2009


Mass and Q EC value of Si 26
journal, March 2009


High efficiency beta-decay spectroscopy using a planar germanium double-sided strip detector
journal, November 2013

  • Larson, N.; Liddick, S. N.; Bennett, M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 727
  • DOI: 10.1016/j.nima.2013.06.027

SPI observations of the diffuse 60 Fe emission in the Galaxy
journal, May 2007


Spectral and intensity variations of Galactic $\mathsf{^{26}}$Al emission
journal, February 2009


Commissioning the A1900 projectile fragment separator
journal, May 2003

  • Morrissey, D. J.; Sherrill, B. M.; Steiner, M.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 204
  • DOI: 10.1016/S0168-583X(02)01895-5

New Results on [TSUP]26[/TSUP]A[CLC]l[/CLC] Production in Classical Novae
journal, April 1997

  • José, Jordi; Hernanz, Margarita; Coc, Alain
  • The Astrophysical Journal, Vol. 479, Issue 1
  • DOI: 10.1086/310575

Spectroscopic factor of the 1 + , 25 Al( p , γ ) 26 Si resonance at E x = 5.68 MeV
journal, October 2013


Thirty-two-fold segmented germanium detectors to identify γ-rays from intermediate-energy exotic beams
journal, July 2001

  • Mueller, W. F.; Church, J. A.; Glasmacher, T.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 466, Issue 3
  • DOI: 10.1016/S0168-9002(01)00257-1

The 25Mg(p, γ)26Al reaction at low astrophysical energies
journal, January 2012


Detection of galactic Al-26 gamma radiation by the SMM spectrometer
journal, May 1985

  • Share, G. H.; Kinzer, R. L.; Kurfess, J. D.
  • The Astrophysical Journal, Vol. 292
  • DOI: 10.1086/184473

A new constraint on the Galactic plane Al-26 distribution
journal, June 1987

  • MacCallum, C. J.; Huters, A. F.; Stang, P. D.
  • The Astrophysical Journal, Vol. 317
  • DOI: 10.1086/165337

Properties of Mg 26 and Si 26 in the sd shell model and the determination of the Al 25 ( p , γ ) Si 26 reaction rate
journal, June 2011


Beta-decay properties of 25 Si and 26 P
journal, September 2004


Digital Data Acquisition System for experiments with segmented detectors at National Superconducting Cyclotron Laboratory
journal, November 2009

  • Starosta, K.; Vaman, C.; Miller, D.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 610, Issue 3
  • DOI: 10.1016/j.nima.2009.09.016

Radioactive 26Al from massive stars in the Galaxy
journal, January 2006

  • Diehl, Roland; Halloin, Hubert; Kretschmer, Karsten
  • Nature, Vol. 439, Issue 7072
  • DOI: 10.1038/nature04364

High-spin states in26Mg
journal, June 1986

  • Glatz, F.; Norbert, S.; Bitterwolf, E.
  • Zeitschrift f�r Physik A Atomic Nuclei, Vol. 324, Issue 2
  • DOI: 10.1007/BF01325130

Mass measurements of Mg 22 and Si 26 via the Mg 24 ( p , t ) Mg 22 and Si 28 ( p , t ) Si 26 reactions
journal, May 2005


Proton‐induced Thermonuclear Reaction Rates for A  = 20–40 Nuclei
journal, May 2001

  • Iliadis, Christian; D’Auria, John M.; Starrfield, Sumner
  • The Astrophysical Journal Supplement Series, Vol. 134, Issue 1
  • DOI: 10.1086/320364

26 Si excited states via one-neutron removal from a 27 Si radioactive ion beam
journal, April 2012


Low-energy resonances in 25Mg(p, γ)26Al, 26Mg(p, γ)27Al and 27Al(p, γ)28Si
journal, June 1990


Nucleosynthesis in Classical Novae: CO versus ONe White Dwarfs
journal, February 1998

  • Jose, Jordi; Hernanz, Margarita
  • The Astrophysical Journal, Vol. 494, Issue 2
  • DOI: 10.1086/305244

Charged-particle thermonuclear reaction rates: III. Nuclear physics input
journal, October 2010


The Nubase2012 evaluation of nuclear properties
journal, December 2012


Astrophysically Important 26Si States Studied with the 28Si(4He,6He)26Si Reaction
journal, August 2008

  • Kwon, Y. K.; Lee, C. S.; Moon, J. Y.
  • Journal of the Korean Physical Society, Vol. 53, Issue 9(2)
  • DOI: 10.3938/jkps.53.1141

The Nucleosynthesis of 26 Al and 60 Fe in Solar Metallicity Stars Extending in Mass from 11 to 120 M : The Hydrostatic and Explosive Contributions
journal, August 2006

  • Limongi, Marco; Chieffi, Alessandro
  • The Astrophysical Journal, Vol. 647, Issue 1
  • DOI: 10.1086/505164

Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions
journal, October 2010


Astrophysically important 26 Si states studied with the 28 Si ( p , t ) 26 Si reaction
journal, March 2002


Measurement of the E c . m . = 184 keV Resonance Strength in the Al 26 g ( p , γ ) Si 27 Reaction
journal, June 2006


26Al in Eucrite Piplia Kalan: Plausible Heat Source and Formation Chronology
journal, May 1999


Level structure of Si 26 and its implications for the astrophysical reaction rate of Al 25 ( p ,γ) Si 26
journal, June 2007


HEAO 3 discovery of Al-26 in the interstellar medium
journal, November 1984

  • Mahoney, W. A.; Ling, J. C.; Wheaton, W. A.
  • The Astrophysical Journal, Vol. 286
  • DOI: 10.1086/162632

Radio Frequency Fragment Separator at NSCL
journal, July 2009

  • Bazin, D.; Andreev, V.; Becerril, A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 606, Issue 3
  • DOI: 10.1016/j.nima.2009.05.100

The Si 28 ( p , t ) Si 26 * ( p ) reaction and implications for the astrophysical Al 25 ( p , γ ) Si 26 reaction rate
journal, October 2010


Unified approach to the classical statistical analysis of small signals
journal, April 1998


New stellar reaction rates for Mg 25 ( p ) 26 Al and Al 25 ( p ) 26 Si
journal, January 1996