skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: LUXSim: A component-centric approach to low-background simulations

Abstract

Geant4 has been used throughout the nuclear and high-energy physics community to simulate energy depositions in various detectors and materials. These simulations have mostly been run with a source beam outside the detector. In the case of low-background physics, however, a primary concern is the effect on the detector from radioactivity inherent in the detector parts themselves. From this standpoint, there is no single source or beam, but rather a collection of sources with potentially complicated spatial extent. LUXSim is a simulation framework used by the LUX collaboration that takes a component-centric approach to event generation and recording. A new set of classes allows for multiple radioactive sources to be set within any number of components at run time, with the entire collection of sources handled within a single simulation run. Various levels of information can also be recorded from the individual components, with these record levels also being set at runtime. This flexibility in both source generation and information recording is possible without the need to recompile, reducing the complexity of code management and the proliferation of versions. Within the code itself, casting geometry objects within this new set of classes rather than as the default Geant4 classes automaticallymore » extends this flexibility to every individual component. No additional work is required on the part of the developer, reducing development time and increasing confidence in the results. Here, we describe the guiding principles behind LUXSim, detail some of its unique classes and methods, and give examples of usage.« less

Authors:
 [1];  [2];  [3];  [3];  [4];  [1];  [3];  [1];  [4];  [5];  [1];  [6];  [1];  [4];  [5];  [7];  [1];  [8];  [5];  [5] more »;  [5];  [1];  [7];  [2];  [6];  [9];  [9];  [3];  [4];  [6];  [3];  [1];  [7];  [10];  [3];  [5];  [11];  [3];  [12];  [6];  [13];  [14];  [3];  [5];  [3];  [1];  [1];  [8];  [4];  [12];  [11];  [6];  [6];  [6];  [6];  [6];  [5];  [6];  [11];  [11];  [13];  [8];  [6];  [12] « less
  1. Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics
  2. South Dakota School of Mines and Technology, Rapid City, SD (United States)
  3. Yale Univ., New Haven, CT (United States). Dept. of Physics
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  5. Brown Univ., Providence, RI (United States). Dept. of Physics
  6. Univ. of California, Davis, CA (United States). Dept. of Physics
  7. Univ. of Maryland, College Park, MD (United States). Dept. of Physics
  8. Univ. of Rochester, NY (United States). Dept. of Physics and Astronomy
  9. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  10. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  11. Texas A & M Univ., College Station, TX (United States). Dept. of Physics
  12. Univ. of South Dakota, Vermillion, SD (United States). Dept. of Physics
  13. Harvard Univ., Cambridge, MA (United States). Dept. of Physics
  14. Univ. of California, Santa Barbara, CA (United States). Dept. of Physics
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA). Nuclear Science and Security Consortium (NSSC); USDOE Laboratory Directed Research and Development (LDRD) Program; National Science Foundation (NSF); Research Corporation for Science Advancement (RCSA), Tucson, AZ (United States); Sanford Underground Research Facility (SURF), Lead, SD (United States)
OSTI Identifier:
1454560
Report Number(s):
LLNL-JRNL-487572
Journal ID: ISSN 0168-9002; PII: S0168900212001532; TRN: US1901064
Grant/Contract Number:  
NA0000979; FG02-08ER41549; FG02-91ER40688; FG02-95ER40917; FG02-91ER40674; FG02-11ER41738; FG02-11ER41751; PHYS-0750671; PHY-0801536; PHY-1004661; PHY-1102470; PHY-1003660; RA0350; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 675; Journal Issue: C; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 97 MATHEMATICS AND COMPUTING; Simulation; Low-background; Dark matter; Underground; Geant4

Citation Formats

Akerib, D. S., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bradley, A., Cahn, S. B., Carmona-Benitez, M. C., Carr, D., Chapman, J. J., Clark, K., Classen, T., Coffey, T., Dazeley, S., de Viveiros, L., Dobi, A., Dragowsky, M., Druszkiewicz, E., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gibson, K. R., Hall, C., Hanhardt, M., Holbrook, B., Ihm, M., Jacobsen, R. G., Kastens, L., Kazkaz, K., Lander, R., Larsen, N., Lee, C., Leonard, D., Lesko, K., Lyashenko, A., Malling, D. C., Mannino, R., McKinsey, D. N., Mei, D. -M., Mock, J., Morii, M., Nelson, H., Nikkel, J. A., Pangilinan, M., Parker, P. D., Phelps, P., Shutt, T., Skulski, W., Sorensen, P., Spaans, J., Stiegler, T., Svoboda, R., Sweany, M., Szydagis, M., Thomson, J., Tripathi, M., Verbus, J. R., Walsh, N., Webb, R., White, J. T., Wlasenko, M., Wolfs, F. L. H., Woods, M., and Zhang, C. LUXSim: A component-centric approach to low-background simulations. United States: N. p., 2012. Web. doi:10.1016/j.nima.2012.02.010.
Akerib, D. S., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bradley, A., Cahn, S. B., Carmona-Benitez, M. C., Carr, D., Chapman, J. J., Clark, K., Classen, T., Coffey, T., Dazeley, S., de Viveiros, L., Dobi, A., Dragowsky, M., Druszkiewicz, E., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gibson, K. R., Hall, C., Hanhardt, M., Holbrook, B., Ihm, M., Jacobsen, R. G., Kastens, L., Kazkaz, K., Lander, R., Larsen, N., Lee, C., Leonard, D., Lesko, K., Lyashenko, A., Malling, D. C., Mannino, R., McKinsey, D. N., Mei, D. -M., Mock, J., Morii, M., Nelson, H., Nikkel, J. A., Pangilinan, M., Parker, P. D., Phelps, P., Shutt, T., Skulski, W., Sorensen, P., Spaans, J., Stiegler, T., Svoboda, R., Sweany, M., Szydagis, M., Thomson, J., Tripathi, M., Verbus, J. R., Walsh, N., Webb, R., White, J. T., Wlasenko, M., Wolfs, F. L. H., Woods, M., & Zhang, C. LUXSim: A component-centric approach to low-background simulations. United States. doi:10.1016/j.nima.2012.02.010.
Akerib, D. S., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bradley, A., Cahn, S. B., Carmona-Benitez, M. C., Carr, D., Chapman, J. J., Clark, K., Classen, T., Coffey, T., Dazeley, S., de Viveiros, L., Dobi, A., Dragowsky, M., Druszkiewicz, E., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gibson, K. R., Hall, C., Hanhardt, M., Holbrook, B., Ihm, M., Jacobsen, R. G., Kastens, L., Kazkaz, K., Lander, R., Larsen, N., Lee, C., Leonard, D., Lesko, K., Lyashenko, A., Malling, D. C., Mannino, R., McKinsey, D. N., Mei, D. -M., Mock, J., Morii, M., Nelson, H., Nikkel, J. A., Pangilinan, M., Parker, P. D., Phelps, P., Shutt, T., Skulski, W., Sorensen, P., Spaans, J., Stiegler, T., Svoboda, R., Sweany, M., Szydagis, M., Thomson, J., Tripathi, M., Verbus, J. R., Walsh, N., Webb, R., White, J. T., Wlasenko, M., Wolfs, F. L. H., Woods, M., and Zhang, C. Mon . "LUXSim: A component-centric approach to low-background simulations". United States. doi:10.1016/j.nima.2012.02.010. https://www.osti.gov/servlets/purl/1454560.
@article{osti_1454560,
title = {LUXSim: A component-centric approach to low-background simulations},
author = {Akerib, D. S. and Bai, X. and Bedikian, S. and Bernard, E. and Bernstein, A. and Bradley, A. and Cahn, S. B. and Carmona-Benitez, M. C. and Carr, D. and Chapman, J. J. and Clark, K. and Classen, T. and Coffey, T. and Dazeley, S. and de Viveiros, L. and Dobi, A. and Dragowsky, M. and Druszkiewicz, E. and Faham, C. H. and Fiorucci, S. and Gaitskell, R. J. and Gibson, K. R. and Hall, C. and Hanhardt, M. and Holbrook, B. and Ihm, M. and Jacobsen, R. G. and Kastens, L. and Kazkaz, K. and Lander, R. and Larsen, N. and Lee, C. and Leonard, D. and Lesko, K. and Lyashenko, A. and Malling, D. C. and Mannino, R. and McKinsey, D. N. and Mei, D. -M. and Mock, J. and Morii, M. and Nelson, H. and Nikkel, J. A. and Pangilinan, M. and Parker, P. D. and Phelps, P. and Shutt, T. and Skulski, W. and Sorensen, P. and Spaans, J. and Stiegler, T. and Svoboda, R. and Sweany, M. and Szydagis, M. and Thomson, J. and Tripathi, M. and Verbus, J. R. and Walsh, N. and Webb, R. and White, J. T. and Wlasenko, M. and Wolfs, F. L. H. and Woods, M. and Zhang, C.},
abstractNote = {Geant4 has been used throughout the nuclear and high-energy physics community to simulate energy depositions in various detectors and materials. These simulations have mostly been run with a source beam outside the detector. In the case of low-background physics, however, a primary concern is the effect on the detector from radioactivity inherent in the detector parts themselves. From this standpoint, there is no single source or beam, but rather a collection of sources with potentially complicated spatial extent. LUXSim is a simulation framework used by the LUX collaboration that takes a component-centric approach to event generation and recording. A new set of classes allows for multiple radioactive sources to be set within any number of components at run time, with the entire collection of sources handled within a single simulation run. Various levels of information can also be recorded from the individual components, with these record levels also being set at runtime. This flexibility in both source generation and information recording is possible without the need to recompile, reducing the complexity of code management and the proliferation of versions. Within the code itself, casting geometry objects within this new set of classes rather than as the default Geant4 classes automatically extends this flexibility to every individual component. No additional work is required on the part of the developer, reducing development time and increasing confidence in the results. Here, we describe the guiding principles behind LUXSim, detail some of its unique classes and methods, and give examples of usage.},
doi = {10.1016/j.nima.2012.02.010},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = C,
volume = 675,
place = {United States},
year = {2012},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share: