DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Data acquisition and readout system for the LUX dark matter experiment

Abstract

LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils from interactions with dark matter particles. Signals from the LUX detector are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. The DAQ is comprised of commercial digitizers with firmware customized for the LUX experiment. Data acquisition systems in rare-event searches must accommodate high rate and large dynamic range during precision calibrations involving radioactive sources, while also delivering low threshold for maximum sensitivity. The LUX DAQ meets these challenges using real-time baseline sup- pression that allows for a maximum event acquisition rate in excess of 1.5 kHz with virtually no deadtime. This work describes the LUX DAQ and the novel acquisition techniques employed in the LUX experiment.

Authors:
 [1];  [2];  [3];  [3];  [4];  [1];  [3];  [1];  [4];  [5];  [1];  [6];  [1];  [3];  [4];  [5];  [1];  [7];  [5];  [5] more »;  [5];  [1];  [8];  [2];  [6];  [9];  [9];  [3];  [4];  [6];  [3];  [1];  [8];  [10];  [3];  [5];  [11];  [3];  [12];  [6];  [13];  [14];  [3];  [5];  [1];  [1];  [7];  [4];  [12];  [11];  [6];  [6];  [6];  [6];  [6];  [5];  [6];  [11];  [11];  [13];  [7];  [6];  [12] « less
  1. Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics
  2. South Dakota School of Mines and Technology, Rapid City, SD (United States)
  3. Yale Univ., New Haven, CT (United States). Dept. of Physics
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  5. Brown Univ., Providence, RI (United States). Dept. of Physics
  6. Univ. of California, Davis, CA (United States). Dept. of Physics
  7. Univ. of Rochester, NY (United States). Dept. of Physics and Astronomy
  8. Univ. of Maryland, College Park, MD (United States). Dept. of Physics
  9. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  10. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  11. Texas A & M Univ., College Station, TX (United States). Dept. of Physics
  12. Univ. of South Dakota, Vermillion, SD (United States). Dept. of Physics
  13. Harvard Univ., Cambridge, MA (United States). Dept. of Physics
  14. Univ. of California, Santa Barbara, CA (United States). Dept. of Physics
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA). Nuclear Science and Security Consortium (NSSC); National Science Foundation (NSF); Sanford Underground Research Facility (SURF), Lead, SD (United States)
OSTI Identifier:
1454557
Grant/Contract Number:  
NA0000979; FG02-08ER41549; FG02-91ER40688; FG02-95ER40917; FG02-91ER40674; FG02-11ER41738; FG02-11ER41751; AC52-07NA27344; PHYS-0750671; PHY-0801536; PHY-1004661; PHY-1102470; PHY-1003660; RA0350
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 668; Journal Issue: C; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; Dark matter detectors; Data acquisition; Liquid xenon

Citation Formats

Akerib, D. S., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bradley, A., Cahn, S. B., Carmona-Benitez, M. C., Carr, D., Chapman, J. J., Clark, K., Classen, T., Coffey, T., Curioni, A., Dazeley, S., de Viveiros, L., Dragowsky, M., Druszkiewicz, E., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gibson, K. R., Hall, C., Hanhardt, M., Holbrook, B., Ihm, M., Jacobsen, R. G., Kastens, L., Kazkaz, K., Lander, R., Larsen, N., Lee, C., Leonard, D., Lesko, K., Lyashenko, A., Malling, D. C., Mannino, R., McKinsey, D. N., Mei, D., Mock, J., Morii, M., Nelson, H., Nikkel, J. A., Pangilinan, M., Phelps, P., Shutt, T., Skulski, W., Sorensen, P., Spaans, J., Stiegler, T., Svoboda, R., Sweany, M., Szydagis, M., Thomson, J., Tripathi, M., Verbus, J. R., Walsh, N., Webb, R., White, J. T., Wlasenko, M., Wolfs, F. L. H., Woods, M., and Zhang, C. Data acquisition and readout system for the LUX dark matter experiment. United States: N. p., 2011. Web. doi:10.1016/j.nima.2011.11.063.
Akerib, D. S., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bradley, A., Cahn, S. B., Carmona-Benitez, M. C., Carr, D., Chapman, J. J., Clark, K., Classen, T., Coffey, T., Curioni, A., Dazeley, S., de Viveiros, L., Dragowsky, M., Druszkiewicz, E., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gibson, K. R., Hall, C., Hanhardt, M., Holbrook, B., Ihm, M., Jacobsen, R. G., Kastens, L., Kazkaz, K., Lander, R., Larsen, N., Lee, C., Leonard, D., Lesko, K., Lyashenko, A., Malling, D. C., Mannino, R., McKinsey, D. N., Mei, D., Mock, J., Morii, M., Nelson, H., Nikkel, J. A., Pangilinan, M., Phelps, P., Shutt, T., Skulski, W., Sorensen, P., Spaans, J., Stiegler, T., Svoboda, R., Sweany, M., Szydagis, M., Thomson, J., Tripathi, M., Verbus, J. R., Walsh, N., Webb, R., White, J. T., Wlasenko, M., Wolfs, F. L. H., Woods, M., & Zhang, C. Data acquisition and readout system for the LUX dark matter experiment. United States. https://doi.org/10.1016/j.nima.2011.11.063
Akerib, D. S., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bradley, A., Cahn, S. B., Carmona-Benitez, M. C., Carr, D., Chapman, J. J., Clark, K., Classen, T., Coffey, T., Curioni, A., Dazeley, S., de Viveiros, L., Dragowsky, M., Druszkiewicz, E., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gibson, K. R., Hall, C., Hanhardt, M., Holbrook, B., Ihm, M., Jacobsen, R. G., Kastens, L., Kazkaz, K., Lander, R., Larsen, N., Lee, C., Leonard, D., Lesko, K., Lyashenko, A., Malling, D. C., Mannino, R., McKinsey, D. N., Mei, D., Mock, J., Morii, M., Nelson, H., Nikkel, J. A., Pangilinan, M., Phelps, P., Shutt, T., Skulski, W., Sorensen, P., Spaans, J., Stiegler, T., Svoboda, R., Sweany, M., Szydagis, M., Thomson, J., Tripathi, M., Verbus, J. R., Walsh, N., Webb, R., White, J. T., Wlasenko, M., Wolfs, F. L. H., Woods, M., and Zhang, C. Mon . "Data acquisition and readout system for the LUX dark matter experiment". United States. https://doi.org/10.1016/j.nima.2011.11.063. https://www.osti.gov/servlets/purl/1454557.
@article{osti_1454557,
title = {Data acquisition and readout system for the LUX dark matter experiment},
author = {Akerib, D. S. and Bai, X. and Bedikian, S. and Bernard, E. and Bernstein, A. and Bradley, A. and Cahn, S. B. and Carmona-Benitez, M. C. and Carr, D. and Chapman, J. J. and Clark, K. and Classen, T. and Coffey, T. and Curioni, A. and Dazeley, S. and de Viveiros, L. and Dragowsky, M. and Druszkiewicz, E. and Faham, C. H. and Fiorucci, S. and Gaitskell, R. J. and Gibson, K. R. and Hall, C. and Hanhardt, M. and Holbrook, B. and Ihm, M. and Jacobsen, R. G. and Kastens, L. and Kazkaz, K. and Lander, R. and Larsen, N. and Lee, C. and Leonard, D. and Lesko, K. and Lyashenko, A. and Malling, D. C. and Mannino, R. and McKinsey, D. N. and Mei, D. and Mock, J. and Morii, M. and Nelson, H. and Nikkel, J. A. and Pangilinan, M. and Phelps, P. and Shutt, T. and Skulski, W. and Sorensen, P. and Spaans, J. and Stiegler, T. and Svoboda, R. and Sweany, M. and Szydagis, M. and Thomson, J. and Tripathi, M. and Verbus, J. R. and Walsh, N. and Webb, R. and White, J. T. and Wlasenko, M. and Wolfs, F. L. H. and Woods, M. and Zhang, C.},
abstractNote = {LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils from interactions with dark matter particles. Signals from the LUX detector are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. The DAQ is comprised of commercial digitizers with firmware customized for the LUX experiment. Data acquisition systems in rare-event searches must accommodate high rate and large dynamic range during precision calibrations involving radioactive sources, while also delivering low threshold for maximum sensitivity. The LUX DAQ meets these challenges using real-time baseline sup- pression that allows for a maximum event acquisition rate in excess of 1.5 kHz with virtually no deadtime. This work describes the LUX DAQ and the novel acquisition techniques employed in the LUX experiment.},
doi = {10.1016/j.nima.2011.11.063},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = C,
volume = 668,
place = {United States},
year = {Mon Nov 28 00:00:00 EST 2011},
month = {Mon Nov 28 00:00:00 EST 2011}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1: Figure 1:: Data flow diagram of the LUX electronics and DAQ. Signals from the PMTs pass through air-side preamplifiers immediately after exiting the xenon space. A postamplifier further amplifies and shapes the signals. The postamplifier generates three outputs: one for the Struck ADCs, one for the DDC-8 digital trigger system,more » and one for the CAEN discriminators. The data from the Struck ADCs is read out from the VME bus to the DAQ computer, where it is sorted and prepared for analysis.« less

Save / Share:

Works referenced in this record:

The ZEPLIN-III dark matter detector: Instrument design, manufacture and commissioning
journal, February 2007


First limits on WIMP nuclear recoil signals in ZEPLIN-II: A two-phase xenon detector for dark matter detection
journal, November 2007


First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory
journal, January 2008


The XENON dark matter search experiment
journal, May 2005


Direct Detection of dark Matter
journal, December 2004


Absolute Scintillation Yields in Liquid Argon and Xenon for Various Particles
journal, March 2002

  • Doke, Tadayoshi; Hitachi, Akira; Kikuchi, Jun
  • Japanese Journal of Applied Physics, Vol. 41, Issue Part 1, No. 3A
  • DOI: 10.1143/JJAP.41.1538

Two-phase emission detectors and their applications
journal, February 1999

  • Bolozdynya, A. I.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 422, Issue 1-3
  • DOI: 10.1016/S0168-9002(98)00965-6

Average energy expended per ion pair in liquid xenon
journal, November 1975


Anisotropic diffusion of electrons in liquid xenon with application to improving the sensitivity of direct dark matter searches
journal, April 2011

  • Sorensen, Peter
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 635, Issue 1
  • DOI: 10.1016/j.nima.2011.01.089

Charge Transport in Solid and Liquid Ar, Kr, and Xe
journal, February 1968


First limits on WIMP nuclear recoil signals in ZEPLIN-II: A two-phase xenon detector for dark matter detection
journal, November 2007


The ZEPLIN-III dark matter detector: instrument design, manufacture and commissioning
text, January 2006


Works referencing / citing this record:

Position reconstruction in LUX
journal, February 2018


Liquid noble gas detectors for low energy particle physics
journal, April 2013


First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility
journal, March 2014


Direct detection of sub-GeV dark matter
journal, April 2012


Results from a Search for Dark Matter in the Complete LUX Exposure
journal, January 2017


Liquid noble gases for dark matter searches: An updated survey
journal, September 2015

  • Bernabei, R.; Belli, P.; Incicchitti, A.
  • International Journal of Modern Physics A, Vol. 30, Issue 26
  • DOI: 10.1142/s0217751x15300537

Ultralow energy calibration of LUX detector using Xe 127 electron capture
journal, December 2017


Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment
journal, May 2018


Liquid noble gas detectors for low energy particle physics
text, January 2012


Results from a search for dark matter in the complete LUX exposure
text, January 2016