DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The LUX prototype detector: Heat exchanger development

Abstract

The LUX (large underground xenon) detector is a two-phase xenon time projection chamber (TPC) designed to search for WIMP–nucleon dark matter interactions. As with all noble element detectors, continuous purification of the detector medium is essential to produce a large (> 1 ms) electron lifetime; this is necessary for efficient measurement of the electron signal which in turn is essential for achieving robust discrimination of signal from background events. Here, we describe the development of a novel purification system deployed in a prototype detector. The results from the operation of this prototype indicated heat exchange with an efficiency above 94% up to a flow rate of 42 slpm, allowing for an electron drift length greater than 1 m to be achieved in approximately 2 days and sustained for the duration of the testing period.

Authors:
 [1];  [2];  [3];  [4];  [5];  [1];  [3];  [4];  [6];  [1];  [7];  [3];  [1];  [4];  [6];  [1];  [8];  [6];  [6];  [9] more »;  [6];  [7];  [3];  [4];  [1];  [7];  [9];  [6];  [10];  [3];  [11];  [7];  [12];  [3];  [1];  [1];  [8];  [4];  [11];  [10];  [7];  [7];  [7];  [7];  [7];  [10];  [10];  [8];  [7];  [11] « less
  1. Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics
  2. South Dakota School of Mines and Technology, Rapid City, SD (United States)
  3. Yale Univ., New Haven, CT (United States). Dept. of Physics
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  5. National Research Nuclear Univ. Moscow Engineering Physics Inst. (MEPhI), Moscow (Russian Federation). Faculty of the Experimental and Theoretical Physics
  6. Brown Univ., Providence, RI (United States). Dept. of Physics
  7. Univ. of California, Davis, CA (United States). Dept. of Physics
  8. Univ. of Rochester, NY (United States). Dept. of Physics and Astronomy
  9. Univ. of Maryland, College Park, MD (United States). Dept. of Physics
  10. Texas A & M Univ., College Station, TX (United States). Dept. of Physics
  11. Univ. of South Dakota, Vermillion, SD (United States). Dept. of Physics
  12. Harvard Univ., Cambridge, MA (United States). Dept. of Physics
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA). Nuclear Science and Security Consortium (NSSC); National Science Foundation (NSF); Research Corporation for Science Advancement (RCSA), Tucson, AZ (United States); Sanford Underground Research Facility (SURF), Lead, SD (United States)
OSTI Identifier:
1454549
Grant/Contract Number:  
NA0000979; FG02-08ER41549; FG02-91ER40688; FG02-95ER40917; FG02-91ER40674; FG02-11ER41738; SC0006605; AC52-07NA27344; PHYS-0750671; PHY-0707051; PHY-0801536; PHY-1004661; PHY-1102470; PHY-1003660; RA0350
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 709; Journal Issue: C; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 79 ASTRONOMY AND ASTROPHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Noble-liquid detectors; Charge transport and multiplication in liquid media; Large detector systems for particle and astroparticle physics

Citation Formats

Akerib, D. S., Bai, X., Bedikian, S., Bernstein, A., Bolozdynya, A., Bradley, A., Cahn, S. B., Carr, D., Chapman, J. J., Clark, K., Classen, T., Curioni, A., Dahl, C. E., Dazeley, S., de Viveiros, L., Dragowsky, M., Druszkiewicz, E., Fiorucci, S., Gaitskell, R. J., Hall, C., Faham, C., Holbrook, B., Kastens, L., Kazkaz, K., Kwong, J., Lander, R., Leonard, D., Malling, D., Mannino, R., McKinsey, D. N., Mei, D., Mock, J., Morii, M., Nikkel, J. A., Phelps, P., Shutt, T., Skulski, W., Sorensen, P., Spaans, J., Steigler, T., Svoboda, R., Sweany, M., Thomson, J., Tripathi, M., Walsh, N., Webb, R., White, J., Wolfs, F. L. H., Woods, M., and Zhang, C. The LUX prototype detector: Heat exchanger development. United States: N. p., 2013. Web. doi:10.1016/j.nima.2013.01.036.
Akerib, D. S., Bai, X., Bedikian, S., Bernstein, A., Bolozdynya, A., Bradley, A., Cahn, S. B., Carr, D., Chapman, J. J., Clark, K., Classen, T., Curioni, A., Dahl, C. E., Dazeley, S., de Viveiros, L., Dragowsky, M., Druszkiewicz, E., Fiorucci, S., Gaitskell, R. J., Hall, C., Faham, C., Holbrook, B., Kastens, L., Kazkaz, K., Kwong, J., Lander, R., Leonard, D., Malling, D., Mannino, R., McKinsey, D. N., Mei, D., Mock, J., Morii, M., Nikkel, J. A., Phelps, P., Shutt, T., Skulski, W., Sorensen, P., Spaans, J., Steigler, T., Svoboda, R., Sweany, M., Thomson, J., Tripathi, M., Walsh, N., Webb, R., White, J., Wolfs, F. L. H., Woods, M., & Zhang, C. The LUX prototype detector: Heat exchanger development. United States. https://doi.org/10.1016/j.nima.2013.01.036
Akerib, D. S., Bai, X., Bedikian, S., Bernstein, A., Bolozdynya, A., Bradley, A., Cahn, S. B., Carr, D., Chapman, J. J., Clark, K., Classen, T., Curioni, A., Dahl, C. E., Dazeley, S., de Viveiros, L., Dragowsky, M., Druszkiewicz, E., Fiorucci, S., Gaitskell, R. J., Hall, C., Faham, C., Holbrook, B., Kastens, L., Kazkaz, K., Kwong, J., Lander, R., Leonard, D., Malling, D., Mannino, R., McKinsey, D. N., Mei, D., Mock, J., Morii, M., Nikkel, J. A., Phelps, P., Shutt, T., Skulski, W., Sorensen, P., Spaans, J., Steigler, T., Svoboda, R., Sweany, M., Thomson, J., Tripathi, M., Walsh, N., Webb, R., White, J., Wolfs, F. L. H., Woods, M., and Zhang, C. Thu . "The LUX prototype detector: Heat exchanger development". United States. https://doi.org/10.1016/j.nima.2013.01.036. https://www.osti.gov/servlets/purl/1454549.
@article{osti_1454549,
title = {The LUX prototype detector: Heat exchanger development},
author = {Akerib, D. S. and Bai, X. and Bedikian, S. and Bernstein, A. and Bolozdynya, A. and Bradley, A. and Cahn, S. B. and Carr, D. and Chapman, J. J. and Clark, K. and Classen, T. and Curioni, A. and Dahl, C. E. and Dazeley, S. and de Viveiros, L. and Dragowsky, M. and Druszkiewicz, E. and Fiorucci, S. and Gaitskell, R. J. and Hall, C. and Faham, C. and Holbrook, B. and Kastens, L. and Kazkaz, K. and Kwong, J. and Lander, R. and Leonard, D. and Malling, D. and Mannino, R. and McKinsey, D. N. and Mei, D. and Mock, J. and Morii, M. and Nikkel, J. A. and Phelps, P. and Shutt, T. and Skulski, W. and Sorensen, P. and Spaans, J. and Steigler, T. and Svoboda, R. and Sweany, M. and Thomson, J. and Tripathi, M. and Walsh, N. and Webb, R. and White, J. and Wolfs, F. L. H. and Woods, M. and Zhang, C.},
abstractNote = {The LUX (large underground xenon) detector is a two-phase xenon time projection chamber (TPC) designed to search for WIMP–nucleon dark matter interactions. As with all noble element detectors, continuous purification of the detector medium is essential to produce a large (> 1 ms) electron lifetime; this is necessary for efficient measurement of the electron signal which in turn is essential for achieving robust discrimination of signal from background events. Here, we describe the development of a novel purification system deployed in a prototype detector. The results from the operation of this prototype indicated heat exchange with an efficiency above 94% up to a flow rate of 42 slpm, allowing for an electron drift length greater than 1 m to be achieved in approximately 2 days and sustained for the duration of the testing period.},
doi = {10.1016/j.nima.2013.01.036},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = C,
volume = 709,
place = {United States},
year = {Thu Jan 24 00:00:00 EST 2013},
month = {Thu Jan 24 00:00:00 EST 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Particle dark matter: evidence, candidates and constraints
journal, January 2005


The LUX dark matter search
journal, January 2010


Recent developments of liquid xenon detectors
journal, May 1982


Direct Detection of dark Matter
journal, December 2004


The XENON100 dark matter experiment
journal, April 2012


Cryogenics for the LUX Detector
journal, August 2009

  • Bolozdynya, A.; Bradley, A.; Bryan, S.
  • IEEE Transactions on Nuclear Science, Vol. 56, Issue 4
  • DOI: 10.1109/TNS.2009.2023443

Study of a zirconium getter for purification of xenon gas
journal, August 2010

  • Dobi, A.; Leonard, D. S.; Hall, C.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 620, Issue 2-3
  • DOI: 10.1016/j.nima.2010.03.151

Xenon recirculation-purification with a heat exchanger
journal, March 2011


Works referencing / citing this record:

Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment
text, January 2018