DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Technical results from the surface run of the LUX dark matter experiment

Abstract

We present the results of the three-month above-ground commissioning run of the Large Underground Xenon (LUX) experiment at the Sanford Underground Research Facility located in Lead, South Dakota, USA. LUX is a 370 kg liquid xenon detector that will search for cold dark matter in the form of Weakly Interacting Massive Particles (WIMPs). The commissioning run, conducted with the detector immersed in a water tank, validated the integration of the various sub-systems in preparation for the underground deployment. Using the data collected, we report excellent light collection properties, achieving 8.4 photoelectrons per keV for 662 keV electron recoils without an applied electric field, measured in the center of the WIMP target. We also find good energy and position resolution in relatively high-energy interactions from a variety of internal and external sources. Finally, we have used the commissioning data to tune the optical properties of our simulation and report updated sensitivity projections for spin-independent WIMP-nucleon scattering.

Authors:
 [1];  [2];  [3];  [4];  [1];  [5];  [3];  [1];  [6];  [1];  [7];  [1];  [8];  [3];  [6];  [6];  [6];  [1];  [9];  [7] more »;  [2];  [9];  [9];  [3];  [4];  [7];  [3];  [1];  [10];  [11];  [11];  [3];  [6];  [12];  [3];  [5];  [13];  [8];  [14];  [15];  [11];  [3];  [6];  [1];  [1];  [12];  [1];  [11];  [8];  [11];  [4];  [12];  [13];  [13];  [9];  [13];  [13];  [6];  [11];  [13];  [12];  [12];  [14];  [8];  [13];  [5] « less
  1. Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics
  2. South Dakota School of Mines and Technology, Rapid City, SD (United States)
  3. Yale Univ., New Haven, CT (United States). Dept. of Physics
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  5. Univ. of South Dakota, Vermillion, SD (United States). Dept. of Physics
  6. Brown Univ., Providence, RI (United States). Dept. of Physics
  7. Univ. of Maryland, College Park, MD (United States). Dept. of Physics
  8. Univ. of Rochester, NY (United States). Dept. of Physics and Astronomy
  9. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  10. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  11. Univ. of Coimbra, Rua Larga, Coimbra (Portugal). LIP-Coimbra, Dept. of Physics
  12. Texas A & M Univ., College Station, TX (United States). Dept. of Physics
  13. Univ. of California, Davis, CA (United States). Dept. of Physics
  14. Harvard Univ., Cambridge, MA (United States). Dept. of Physics
  15. Univ. of California, Santa Barbara, CA (United States). Dept. of Physics
Publication Date:
Research Org.:
University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), High Energy Physics (HEP)
Contributing Org.:
Nuclear Science & Security Consortium (NNSC)
OSTI Identifier:
1454541
Alternate Identifier(s):
OSTI ID: 1511361
Grant/Contract Number:  
NA0000979; FG02-08ER41549; FG02-91ER40688; FG02-95ER40917; FG02-91ER40674; FG02-11ER41738; FG02-11ER41751; AC52-07NA27344; PHY-0750671; PHY-0801536; PHY-1004661; PHY-1102470; PHY-1003660; RA0350; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Astroparticle Physics
Additional Journal Information:
Journal Volume: 45; Journal Issue: C; Journal ID: ISSN 0927-6505
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Liquid xenon detectors; Dark matter; WIMP; Direct detection

Citation Formats

Akerib, D. S., Bai, X., Bernard, E., Bernstein, A., Bradley, A., Byram, D., Cahn, S. B., Carmona-Benitez, M. C., Chapman, J. J., Coffey, T., Dobi, A., Dragowsky, E., Druszkiewicz, E., Edwards, B., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gibson, K. R., Gilchriese, M., Hall, C., Hanhardt, M., Ihm, M., Jacobsen, R. G., Kastens, L., Kazkaz, K., Knoche, R., Larsen, N., Lee, C., Lesko, K. T., Lindote, A., Lopes, M. I., Lyashenko, A., Malling, D. C., Mannino, R., McKinsey, D. N., Mei, D., Mock, J., Moongweluwan, M., Morii, M., Nelson, H., Neves, F., Nikkel, J. A., Pangilinan, M., Pech, K., Phelps, P., Rodionov, A., Shutt, T., Silva, C., Skulski, W., Solovov, V. N., Sorensen, P., Stiegler, T., Sweany, M., Szydagis, M., Taylor, D., Tripathi, M., Uvarov, S., Verbus, J. R., de Viveiros, L., Walsh, N., Webb, R., White, J. T., Wlasenko, M., Wolfs, F. L. H., Woods, M., and Zhang, C. Technical results from the surface run of the LUX dark matter experiment. United States: N. p., 2013. Web. doi:10.1016/j.astropartphys.2013.02.001.
Akerib, D. S., Bai, X., Bernard, E., Bernstein, A., Bradley, A., Byram, D., Cahn, S. B., Carmona-Benitez, M. C., Chapman, J. J., Coffey, T., Dobi, A., Dragowsky, E., Druszkiewicz, E., Edwards, B., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gibson, K. R., Gilchriese, M., Hall, C., Hanhardt, M., Ihm, M., Jacobsen, R. G., Kastens, L., Kazkaz, K., Knoche, R., Larsen, N., Lee, C., Lesko, K. T., Lindote, A., Lopes, M. I., Lyashenko, A., Malling, D. C., Mannino, R., McKinsey, D. N., Mei, D., Mock, J., Moongweluwan, M., Morii, M., Nelson, H., Neves, F., Nikkel, J. A., Pangilinan, M., Pech, K., Phelps, P., Rodionov, A., Shutt, T., Silva, C., Skulski, W., Solovov, V. N., Sorensen, P., Stiegler, T., Sweany, M., Szydagis, M., Taylor, D., Tripathi, M., Uvarov, S., Verbus, J. R., de Viveiros, L., Walsh, N., Webb, R., White, J. T., Wlasenko, M., Wolfs, F. L. H., Woods, M., & Zhang, C. Technical results from the surface run of the LUX dark matter experiment. United States. https://doi.org/10.1016/j.astropartphys.2013.02.001
Akerib, D. S., Bai, X., Bernard, E., Bernstein, A., Bradley, A., Byram, D., Cahn, S. B., Carmona-Benitez, M. C., Chapman, J. J., Coffey, T., Dobi, A., Dragowsky, E., Druszkiewicz, E., Edwards, B., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gibson, K. R., Gilchriese, M., Hall, C., Hanhardt, M., Ihm, M., Jacobsen, R. G., Kastens, L., Kazkaz, K., Knoche, R., Larsen, N., Lee, C., Lesko, K. T., Lindote, A., Lopes, M. I., Lyashenko, A., Malling, D. C., Mannino, R., McKinsey, D. N., Mei, D., Mock, J., Moongweluwan, M., Morii, M., Nelson, H., Neves, F., Nikkel, J. A., Pangilinan, M., Pech, K., Phelps, P., Rodionov, A., Shutt, T., Silva, C., Skulski, W., Solovov, V. N., Sorensen, P., Stiegler, T., Sweany, M., Szydagis, M., Taylor, D., Tripathi, M., Uvarov, S., Verbus, J. R., de Viveiros, L., Walsh, N., Webb, R., White, J. T., Wlasenko, M., Wolfs, F. L. H., Woods, M., and Zhang, C. Thu . "Technical results from the surface run of the LUX dark matter experiment". United States. https://doi.org/10.1016/j.astropartphys.2013.02.001. https://www.osti.gov/servlets/purl/1454541.
@article{osti_1454541,
title = {Technical results from the surface run of the LUX dark matter experiment},
author = {Akerib, D. S. and Bai, X. and Bernard, E. and Bernstein, A. and Bradley, A. and Byram, D. and Cahn, S. B. and Carmona-Benitez, M. C. and Chapman, J. J. and Coffey, T. and Dobi, A. and Dragowsky, E. and Druszkiewicz, E. and Edwards, B. and Faham, C. H. and Fiorucci, S. and Gaitskell, R. J. and Gibson, K. R. and Gilchriese, M. and Hall, C. and Hanhardt, M. and Ihm, M. and Jacobsen, R. G. and Kastens, L. and Kazkaz, K. and Knoche, R. and Larsen, N. and Lee, C. and Lesko, K. T. and Lindote, A. and Lopes, M. I. and Lyashenko, A. and Malling, D. C. and Mannino, R. and McKinsey, D. N. and Mei, D. and Mock, J. and Moongweluwan, M. and Morii, M. and Nelson, H. and Neves, F. and Nikkel, J. A. and Pangilinan, M. and Pech, K. and Phelps, P. and Rodionov, A. and Shutt, T. and Silva, C. and Skulski, W. and Solovov, V. N. and Sorensen, P. and Stiegler, T. and Sweany, M. and Szydagis, M. and Taylor, D. and Tripathi, M. and Uvarov, S. and Verbus, J. R. and de Viveiros, L. and Walsh, N. and Webb, R. and White, J. T. and Wlasenko, M. and Wolfs, F. L. H. and Woods, M. and Zhang, C.},
abstractNote = {We present the results of the three-month above-ground commissioning run of the Large Underground Xenon (LUX) experiment at the Sanford Underground Research Facility located in Lead, South Dakota, USA. LUX is a 370 kg liquid xenon detector that will search for cold dark matter in the form of Weakly Interacting Massive Particles (WIMPs). The commissioning run, conducted with the detector immersed in a water tank, validated the integration of the various sub-systems in preparation for the underground deployment. Using the data collected, we report excellent light collection properties, achieving 8.4 photoelectrons per keV for 662 keV electron recoils without an applied electric field, measured in the center of the WIMP target. We also find good energy and position resolution in relatively high-energy interactions from a variety of internal and external sources. Finally, we have used the commissioning data to tune the optical properties of our simulation and report updated sensitivity projections for spin-independent WIMP-nucleon scattering.},
doi = {10.1016/j.astropartphys.2013.02.001},
journal = {Astroparticle Physics},
number = C,
volume = 45,
place = {United States},
year = {Thu Mar 07 00:00:00 EST 2013},
month = {Thu Mar 07 00:00:00 EST 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Detectability of certain dark-matter candidates
journal, June 1985


Status of the LUX Dark Matter Search
conference, January 2010

  • Fiorucci, S.; Akerib, D. S.; Bedikian, S.
  • SUSY09: 7th International Conference on Supersymmetry and the Unification of Fundamental Interactions, AIP Conference Proceedings
  • DOI: 10.1063/1.3327777

The Large Underground Xenon (LUX) experiment
journal, March 2013

  • Akerib, D. S.; Bai, X.; Bedikian, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 704
  • DOI: 10.1016/j.nima.2012.11.135

Scintillation response of liquid Xe surrounded by PTFE reflector for gamma rays
journal, December 2004

  • Yamashita, M.; Doke, T.; Kawasaki, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 535, Issue 3
  • DOI: 10.1016/j.nima.2004.06.168

Study of a zirconium getter for purification of xenon gas
journal, August 2010

  • Dobi, A.; Leonard, D. S.; Hall, C.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 620, Issue 2-3
  • DOI: 10.1016/j.nima.2010.03.151

A simple high-sensitivity technique for purity analysis of xenon gas
journal, September 2010

  • Leonard, D. S.; Dobi, A.; Hall, L. J. Kaufman, C.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 621, Issue 1-3
  • DOI: 10.1016/j.nima.2010.04.152

Data acquisition and readout system for the LUX dark matter experiment
journal, March 2012

  • Akerib, D. S.; Bai, X.; Bedikian, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 668
  • DOI: 10.1016/j.nima.2011.11.063

Muon-induced background study for underground laboratories
journal, March 2006


Evidence for a triplet state of the self-trapped exciton states in liquid argon, krypton and xenon
journal, June 1978


Dynamical behavior of free electrons in the recombination process in liquid argon, krypton, and xenon
journal, October 1979


Review of Particle Physics
journal, July 2012


The XENON100 dark matter experiment
journal, April 2012


Position Reconstruction in a Dual Phase Xenon Scintillation Detector
journal, December 2012

  • Solovov, V. N.; Belov, V. A.; Akimov, D. Yu.
  • IEEE Transactions on Nuclear Science, Vol. 59, Issue 6
  • DOI: 10.1109/TNS.2012.2221742

Geant4—a simulation toolkit
journal, July 2003

  • Agostinelli, S.; Allison, J.; Amako, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 506, Issue 3
  • DOI: 10.1016/S0168-9002(03)01368-8

LUXSim: A component-centric approach to low-background simulations
journal, May 2012

  • Akerib, D. S.; Bai, X.; Bedikian, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 675
  • DOI: 10.1016/j.nima.2012.02.010

NEST: a comprehensive model for scintillation yield in liquid xenon
journal, October 2011


Nuclear Data Sheets for A = 214
journal, September 1995


Search for an Annual Modulation in a p -Type Point Contact Germanium Dark Matter Detector
journal, September 2011


Scintillation efficiency and ionization yield of liquid xenon for monoenergetic nuclear recoils down to 4 keV
journal, February 2010


New measurement of the scintillation efficiency of low-energy nuclear recoils in liquid xenon
journal, October 2011


Nuclear recoil scintillation and ionisation yields in liquid xenon from ZEPLIN-III data
journal, November 2011


Dark Matter Search Results from the CDMS II Experiment
journal, March 2010


Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes
journal, August 2011


WIMP-nucleon cross-section results from the second science run of ZEPLIN-III
journal, March 2012


Dark Matter Results from 225 Live Days of XENON100 Data
journal, November 2012


Nuclear Data Sheets for A = 214
journal, September 1995


Evidence for a triplet state of the self-trapped exciton states in liquid argon, krypton and xenon
journal, June 1978


Cryogenics for the LUX Detector
journal, August 2009

  • Bolozdynya, A.; Bradley, A.; Bryan, S.
  • IEEE Transactions on Nuclear Science, Vol. 56, Issue 4
  • DOI: 10.1109/tns.2009.2023443

Search for an Annual Modulation in a p -Type Point Contact Germanium Dark Matter Detector
text, January 2011

  • E., Aalseth, C.; F., Wilkerson, J.; J., Diaz Leon,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/pghy-ts25

Works referencing / citing this record:

Liquid noble gases for dark matter searches: An updated survey
journal, September 2015

  • Bernabei, R.; Belli, P.; Incicchitti, A.
  • International Journal of Modern Physics A, Vol. 30, Issue 26
  • DOI: 10.1142/s0217751x15300537

DARWIN: towards the ultimate dark matter detector
journal, November 2016


Dark compact objects: An extensive overview
journal, March 2019


DARWIN: towards the ultimate dark matter detector
text, January 2016


Liquid noble gas detectors for low energy particle physics
text, January 2012


Results from a search for dark matter in the complete LUX exposure
text, January 2016