skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modelling DC responses of 3D complex fracture networks

Abstract

Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

Authors:
 [1];  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1452664
Alternate Identifier(s):
OSTI ID: 1465193
Report Number(s):
SAND-2018-2316J; SAND-2018-6063J
Journal ID: ISSN 0956-540X; 661130
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Journal International
Additional Journal Information:
Journal Volume: 214; Journal Issue: 3; Journal ID: ISSN 0956-540X
Publisher:
Oxford University Press
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Numerical approximations and analysis; Electrical properties; DC resistivity modeling; Fracture networks; Azimuthal resistivity surveys; electrical properties; fracture and flow; numerical approximations and analysis

Citation Formats

Beskardes, Gungor Didem, and Weiss, Chester Joseph. Modelling DC responses of 3D complex fracture networks. United States: N. p., 2018. Web. doi:10.1093/gji/ggy234.
Beskardes, Gungor Didem, & Weiss, Chester Joseph. Modelling DC responses of 3D complex fracture networks. United States. doi:10.1093/gji/ggy234.
Beskardes, Gungor Didem, and Weiss, Chester Joseph. Thu . "Modelling DC responses of 3D complex fracture networks". United States. doi:10.1093/gji/ggy234. https://www.osti.gov/servlets/purl/1452664.
@article{osti_1452664,
title = {Modelling DC responses of 3D complex fracture networks},
author = {Beskardes, Gungor Didem and Weiss, Chester Joseph},
abstractNote = {Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.},
doi = {10.1093/gji/ggy234},
journal = {Geophysical Journal International},
number = 3,
volume = 214,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Convergence of the Jacobi-preconditioned conjugate gradient linear solver (Weiss, 2001) for discretization of the fracture models consisted of 100 fractures following power-law fracture length distribution, described in Section 4.2.1. The results show the elapsed times for a target residual norm 1 x 10-12.

Save / Share:

Works referenced in this record:

Conditional simulations of fluid flow in three-dimensional networks of discrete fractures
journal, October 1987


A Stochastic Model of a Fractured Rock Conditioned by Measured Information
journal, January 1984

  • Andersson, Johan; Shapiro, Allen M.; Bear, Jacob
  • Water Resources Research, Vol. 20, Issue 1
  • DOI: 10.1029/WR020i001p00079

Effective permeability of fractured porous media in steady state flow: PERMEABILITY OF FRACTURED POROUS MEDIA
journal, January 2003

  • Bogdanov, I. I.; Mourzenko, V. V.; Thovert, J. -F.
  • Water Resources Research, Vol. 39, Issue 1
  • DOI: 10.1029/2001WR000756

Scaling of fracture systems in geological media
journal, August 2001

  • Bonnet, E.; Bour, O.; Odling, N. E.
  • Reviews of Geophysics, Vol. 39, Issue 3
  • DOI: 10.1029/1999RG000074

2.5-D discrete-dual-porosity model for simulating geoelectrical experiments in fractured rock
journal, February 2017

  • Caballero Sanz, Victor; Roubinet, Delphine; Demirel, Serdar
  • Geophysical Journal International, Vol. 209, Issue 2
  • DOI: 10.1093/gji/ggx080

Transient-electromagnetic finite-difference time-domain earth modeling over steel infrastructure
journal, March 2015

  • Commer, Michael; Hoversten, G. Michael; Um, Evan Schankee
  • GEOPHYSICS, Vol. 80, Issue 2
  • DOI: 10.1190/geo2014-0324.1

On the frequency-length distribution of the San Andreas Fault System
journal, July 1993

  • Davy, P.
  • Journal of Geophysical Research: Solid Earth, Vol. 98, Issue B7
  • DOI: 10.1029/93JB00372

Synthetic benchmark for modeling flow in 3D fractured media
journal, January 2013


Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses
journal, December 2015

  • Gutierrez, Marte; Youn, Dong-Joon
  • Journal of Rock Mechanics and Geotechnical Engineering, Vol. 7, Issue 6
  • DOI: 10.1016/j.jrmge.2015.07.006

Hydro-frac monitoring using ground time-domain electromagnetics: Hydro-frac monitoring using ground time-domain EM
journal, October 2015

  • Hoversten, G. Michael; Commer, Michael; Haber, Eldad
  • Geophysical Prospecting, Vol. 63, Issue 6
  • DOI: 10.1111/1365-2478.12300

Non-universal scaling of fracture length and opening displacement
journal, January 1994

  • Hatton, C. G.; Main, I. G.; Meredith, P. G.
  • Nature, Vol. 367, Issue 6459
  • DOI: 10.1038/367160a0

Hydraulic fracturing in a sedimentary geothermal reservoir: Results and implications
journal, October 2005

  • Legarth, B.; Huenges, E.; Zimmermann, G.
  • International Journal of Rock Mechanics and Mining Sciences, Vol. 42, Issue 7-8, p. 1028-1041
  • DOI: 10.1016/j.ijrmms.2005.05.014

The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks
journal, May 2017


Hierarchical modeling of flow in naturally fractured formations with multiple length scales
journal, March 2001

  • Lee, S. H.; Lough, M. F.; Jensen, C. L.
  • Water Resources Research, Vol. 37, Issue 3
  • DOI: 10.1029/2000WR900340

Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir Through Discrete Fracture Networks and Homogenized Media
journal, August 2008

  • Li, Liyong; Lee, Seong H.
  • SPE Reservoir Evaluation & Engineering, Vol. 11, Issue 04
  • DOI: 10.2118/103901-PA

Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions
journal, December 2002


From field data to fracture network modeling: An example incorporating spatial structure
journal, July 1987


Porous media equivalents for networks of discontinuous fractures
journal, June 1982

  • Long, J. C. S.; Remer, J. S.; Wilson, C. R.
  • Water Resources Research, Vol. 18, Issue 3
  • DOI: 10.1029/WR018i003p00645

Singularity removal: A refinement of resistivity modeling techniques
journal, June 1989

  • Lowry, T.; Allen, M. B.; Shive, P. N.
  • GEOPHYSICS, Vol. 54, Issue 6
  • DOI: 10.1190/1.1442704

Three-dimensional numerical simulation of single-phase transient compressible flows and well-tests in fractured formations
journal, June 2011

  • Mourzenko, V. V.; Bogdanov, I. I.; Thovert, J. -F.
  • Mathematics and Computers in Simulation, Vol. 81, Issue 10
  • DOI: 10.1016/j.matcom.2010.12.014

Finite element mesh for complex flow simulation
journal, April 2011


Connectivity of fracture systems-a percolation theory approach
journal, February 1983


Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity
journal, March 2015


Discrete-dual-porosity model for electric current flow in fractured rock: ROUBINET AND IRVING
journal, February 2014

  • Roubinet, Delphine; Irving, James
  • Journal of Geophysical Research: Solid Earth, Vol. 119, Issue 2
  • DOI: 10.1002/2013JB010668

What we can learn from measurements of air electric conductivity in 222 Rn-rich atmosphere : Air Electric Conductivity
journal, February 2017

  • Seran, E.; Godefroy, M.; Pili, E.
  • Earth and Space Science, Vol. 4, Issue 2
  • DOI: 10.1002/2016EA000241

Anisotropic characteristics of electrical responses of fractured reservoir with multiple sets of fractures
journal, May 2009


The frequency and apertures of fractures in rock
journal, January 1970

  • Snow, D. T.
  • International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 7, Issue 1
  • DOI: 10.1016/0148-9062(70)90025-2

Multiscale Hydraulic Fracture Modeling With Discontinuous Galerkin Frequency-Domain Method and Impedance Transition Boundary Condition
journal, November 2017

  • Sun, Qingtao; Zhang, Runren; Zhan, Qiwei
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, Issue 11
  • DOI: 10.1109/TGRS.2017.2730039

Characterizing Jointed Systems by Azimuthal Resistivity Surveys
journal, July 1988


Flow channeling in heterogeneous fractured rocks
journal, May 1998

  • Tsang, Chin-Fu; Neretnieks, Ivars
  • Reviews of Geophysics, Vol. 36, Issue 2
  • DOI: 10.1029/97RG03319

Hydrologic issues associated with nuclear waste repositories: HYDROLOGIC ISSUES ASSOCIATED WITH NUCLEAR WASTE REPOSITORIES
journal, September 2015

  • Tsang, Chin-Fu; Neretnieks, Ivars; Tsang, Yvonne
  • Water Resources Research, Vol. 51, Issue 9
  • DOI: 10.1002/2015WR017641

Tracer transport in a stochastic continuum model of fractured media
journal, October 1996

  • Tsang, Y. W.; Tsang, C. F.; Hale, F. V.
  • Water Resources Research, Vol. 32, Issue 10
  • DOI: 10.1029/96WR01397

Finite element modelling of transient electromagnetic fields near steel-cased wells
journal, June 2015

  • Um, Evan Schankee; Commer, Michael; Newman, Gregory A.
  • Geophysical Journal International, Vol. 202, Issue 2
  • DOI: 10.1093/gji/ggv193

A new computer code for discrete fracture network modelling
journal, March 2010


Fractured porous medium flow analysis using numerical manifold method with independent covers
journal, November 2016