skip to main content


This content will become publicly available on May 15, 2019

Title: Gram scale synthesis of Fe/Fe xO y core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites

In this paper, significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/Fe xO y core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of the resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.
ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0884-2914; applab; 663407
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Materials Research
Additional Journal Information:
Journal Name: Journal of Materials Research; Journal ID: ISSN 0884-2914
Materials Research Society
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
77 NANOSCIENCE AND NANOTECHNOLOGY; composite; magnetic; nanostructure
OSTI Identifier: