In situ Stripline Electrochemical NMR for Batteries
Abstract
Here, there exist some long outstanding technical challenges that continue to be of hindrance to fully harnessing the unique investigative advantages of nuclear magnetic resonance (NMR) spectroscopy in the in situ investigation of rechargeable battery chemistry. For instance, the conducting materials and circuitry necessary for an operational battery always deteriorate the coil–based NMR sensitivity when placed inside the coil, and the shape mismatch between them leads to low sample filling factors and even higher detection limits. We report herein a novel and successful adaptation of stripline NMR detection that integrates seamlessly the NMR detection with construction of an electro–chemical device in general (or a battery in particular) which leads to a technique with much higher detection sensitivity, higher sample filling factors, and which is particularly suitable for mass–limited samples.
- Authors:
-
- Georgetown Univ., Washington, D.C. (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
- George Washington Univ., Washington, DC (United States)
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Georgetown Univ., Washington, D.C. (United States)
- Publication Date:
- Research Org.:
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Org.:
- USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
- OSTI Identifier:
- 1444078
- Alternate Identifier(s):
- OSTI ID: 1456287
- Report Number(s):
- SAND-2018-3447J
Journal ID: ISSN 2196-0216; 663959; TRN: US1900966
- Grant/Contract Number:
- AC04-94AL85000; FG02-07ER15895
- Resource Type:
- Accepted Manuscript
- Journal Name:
- ChemElectroChem
- Additional Journal Information:
- Journal Volume: 5; Journal Issue: 17; Journal ID: ISSN 2196-0216
- Publisher:
- ChemPubSoc Europe
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 25 ENERGY STORAGE; In situ EC-NMR; Stripline NMR Detection; Li-ion Battery Chemistry; In situ or Operando Characterization of Batteries
Citation Formats
Sorte, Eric Glenn, Banek, Nathan A., Wagner, Michael J., Alam, Todd M., and Tong, YuYe Jay. In situ Stripline Electrochemical NMR for Batteries. United States: N. p., 2018.
Web. doi:10.1002/celc.201800434.
Sorte, Eric Glenn, Banek, Nathan A., Wagner, Michael J., Alam, Todd M., & Tong, YuYe Jay. In situ Stripline Electrochemical NMR for Batteries. United States. doi:10.1002/celc.201800434.
Sorte, Eric Glenn, Banek, Nathan A., Wagner, Michael J., Alam, Todd M., and Tong, YuYe Jay. Mon .
"In situ Stripline Electrochemical NMR for Batteries". United States. doi:10.1002/celc.201800434. https://www.osti.gov/servlets/purl/1444078.
@article{osti_1444078,
title = {In situ Stripline Electrochemical NMR for Batteries},
author = {Sorte, Eric Glenn and Banek, Nathan A. and Wagner, Michael J. and Alam, Todd M. and Tong, YuYe Jay},
abstractNote = {Here, there exist some long outstanding technical challenges that continue to be of hindrance to fully harnessing the unique investigative advantages of nuclear magnetic resonance (NMR) spectroscopy in the in situ investigation of rechargeable battery chemistry. For instance, the conducting materials and circuitry necessary for an operational battery always deteriorate the coil–based NMR sensitivity when placed inside the coil, and the shape mismatch between them leads to low sample filling factors and even higher detection limits. We report herein a novel and successful adaptation of stripline NMR detection that integrates seamlessly the NMR detection with construction of an electro–chemical device in general (or a battery in particular) which leads to a technique with much higher detection sensitivity, higher sample filling factors, and which is particularly suitable for mass–limited samples.},
doi = {10.1002/celc.201800434},
journal = {ChemElectroChem},
number = 17,
volume = 5,
place = {United States},
year = {2018},
month = {6}
}
Web of Science
Figures / Tables:

Works referenced in this record:
Editorial: Organic and Molecular Electrochemistry
journal, April 2017
- Lessard, Jean
- Current Opinion in Electrochemistry, Vol. 2, Issue 1
Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries
journal, April 2016
- Pecher, Oliver; Bayley, Paul M.; Liu, Hao
- Journal of Magnetic Resonance, Vol. 265
In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells
journal, June 2013
- Blanc, Frédéric; Leskes, Michal; Grey, Clare P.
- Accounts of Chemical Research, Vol. 46, Issue 9
Observation of Methanol Behavior in Fuel Cells In Situ by NMR Spectroscopy
journal, March 2012
- Han, Oc Hee; Han, Kee Sung; Shin, Chang Woo
- Angewandte Chemie International Edition, Vol. 51, Issue 16
A Microfluidic High-Resolution NMR Flow Probe
journal, April 2009
- Bart, Jacob; Kolkman, Ard J.; Oosthoek-de Vries, Anna Jo
- Journal of the American Chemical Society, Vol. 131, Issue 14
Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7 Li MRI
journal, November 2015
- Chang, Hee Jung; Ilott, Andrew J.; Trease, Nicole M.
- Journal of the American Chemical Society, Vol. 137, Issue 48
Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR
journal, January 2005
- Wensink, Henk; Benito-Lopez, Fernando; Hermes, Dorothee C.
- Lab on a Chip, Vol. 5, Issue 3
In situ methods for Li-ion battery research: A review of recent developments
journal, August 2015
- Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L.
- Journal of Power Sources, Vol. 288
In situ NMR of lithium ion batteries: Bulk susceptibility effects and practical considerations
journal, April 2012
- Trease, Nicole M.; Zhou, Lina; Chang, Hee Jung
- Solid State Nuclear Magnetic Resonance, Vol. 42
NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries
journal, October 2004
- Grey, Clare P.; Dupré, Nicolas
- Chemical Reviews, Vol. 104, Issue 10
Strong magnetoelectrolysis effect during electrochemical reaction monitored in situ by high-resolution NMR spectroscopy
journal, August 2017
- Ferreira Gomes, Bruna; Ferreira da Silva, Pollyana; Silva Lobo, Carlos Manuel
- Analytica Chimica Acta, Vol. 983
Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6 Li/ 7 Li NMR and SEM
journal, July 2015
- Chang, Hee Jung; Trease, Nicole M.; Ilott, Andrew J.
- The Journal of Physical Chemistry C, Vol. 119, Issue 29
Multinuclear in situ magnetic resonance imaging of electrochemical double-layer capacitors
journal, August 2014
- Ilott, Andrew J.; Trease, Nicole M.; Grey, Clare P.
- Nature Communications, Vol. 5, Issue 1
Materials’ Methods: NMR in Battery Research
journal, November 2016
- Pecher, Oliver; Carretero-González, Javier; Griffith, Kent J.
- Chemistry of Materials, Vol. 29, Issue 1
Direct Detection of Discharge Products in Lithium-Oxygen Batteries by Solid-State NMR Spectroscopy
journal, July 2012
- Leskes, Michal; Drewett, Nicholas E.; Hardwick, Laurence J.
- Angewandte Chemie International Edition, Vol. 51, Issue 34
In situ NMR observation of the lithium extraction/insertion from LiCoO2 cathode
journal, October 2013
- Shimoda, Keiji; Murakami, Miwa; Takamatsu, Daiko
- Electrochimica Acta, Vol. 108
Sustainability and in situ monitoring in battery development
journal, December 2016
- Grey, C. P.; Tarascon, J. M.
- Nature Materials, Vol. 16, Issue 1
In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle
journal, April 2007
- Letellier, M.; Chevallier, F.; Morcrette, Mathieu
- Carbon, Vol. 45, Issue 5
Radiofrequency microcoils in magnetic resonance
journal, July 1997
- G. Webb, Andrew
- Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 31, Issue 1
In situ nuclear magnetic resonance investigations of lithium ions in carbon electrode materials using a novel detector
journal, August 2001
- Gerald, R. E.; Sanchez, J.; Johnson, C. S.
- Journal of Physics: Condensed Matter, Vol. 13, Issue 36
7Li MRI of Li batteries reveals location of microstructural lithium
journal, February 2012
- Chandrashekar, S.; Trease, Nicole M.; Chang, Hee Jung
- Nature Materials, Vol. 11, Issue 4
Optimization of stripline-based microfluidic chips for high-resolution NMR
journal, December 2009
- Bart, J.; Janssen, J. W. G.; van Bentum, P. J. M.
- Journal of Magnetic Resonance, Vol. 201, Issue 2
In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite
journal, May 2006
- Letellier, Michel; Chevallier, Frédéric; Béguin, François
- Journal of Physics and Chemistry of Solids, Vol. 67, Issue 5-6
Visualizing skin effects in conductors with MRI: <mml:math altimg="si5.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:msup><mml:mrow/><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>Li MRI experiments and calculations
journal, August 2014
- Ilott, Andrew J.; Chandrashekar, S.; Klöckner, Andreas
- Journal of Magnetic Resonance, Vol. 245
New cell design for in-situ NMR studies of lithium-ion batteries
journal, December 2011
- Poli, Fabrizia; Kshetrimayum, Jugeshwar S.; Monconduit, Laure
- Electrochemistry Communications, Vol. 13, Issue 12
Continuous Flow 1 H and 13 C NMR Spectroscopy in Microfluidic Stripline NMR Chips
journal, January 2017
- Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M.
- Analytical Chemistry, Vol. 89, Issue 4
Stripline probes for nuclear magnetic resonance
journal, November 2007
- van Bentum, P. J. M.; Janssen, J. W. G.; Kentgens, A. P. M.
- Journal of Magnetic Resonance, Vol. 189, Issue 1
High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors
journal, February 2008
- Kentgens, A. P. M.; Bart, J.; van Bentum, P. J. M.
- The Journal of Chemical Physics, Vol. 128, Issue 5
Observation of Methanol Behavior in Fuel Cells In Situ by NMR Spectroscopy
journal, March 2012
- Han, Oc Hee; Han, Kee Sung; Shin, Chang Woo
- Angewandte Chemie, Vol. 124, Issue 16
Direct Detection of Discharge Products in Lithium-Oxygen Batteries by Solid-State NMR Spectroscopy
journal, July 2012
- Leskes, Michal; Drewett, Nicholas E.; Hardwick, Laurence J.
- Angewandte Chemie, Vol. 124, Issue 34
In situ 7 Li nuclear magnetic resonance study of the relaxation effect in practical lithium ion batteries
journal, November 2014
- Gotoh, Kazuma; Izuka, Misato; Arai, Juichi
- Carbon, Vol. 79
Limit of detection of cerebral metabolites by localized NMR spectroscopy using microcoils
journal, April 2008
- Baxan, Nicoleta; Rabeson, Herald; Pasquet, Guillaume
- Comptes Rendus Chimie, Vol. 11, Issue 4-5
Real-time 3D imaging of microstructure growth in battery cells using indirect MRI
journal, September 2016
- Ilott, Andrew J.; Mohammadi, Mohaddese; Chang, Hee Jung
- Proceedings of the National Academy of Sciences, Vol. 113, Issue 39
Figures / Tables found in this record: