skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ Stripline Electrochemical NMR for Batteries

Abstract

Here, there exist some long outstanding technical challenges that continue to be of hindrance to fully harnessing the unique investigative advantages of nuclear magnetic resonance (NMR) spectroscopy in the in situ investigation of rechargeable battery chemistry. For instance, the conducting materials and circuitry necessary for an operational battery always deteriorate the coil–based NMR sensitivity when placed inside the coil, and the shape mismatch between them leads to low sample filling factors and even higher detection limits. We report herein a novel and successful adaptation of stripline NMR detection that integrates seamlessly the NMR detection with construction of an electro–chemical device in general (or a battery in particular) which leads to a technique with much higher detection sensitivity, higher sample filling factors, and which is particularly suitable for mass–limited samples.

Authors:
 [1];  [2];  [2];  [3];  [4]
  1. Georgetown Univ., Washington, D.C. (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  2. George Washington Univ., Washington, DC (United States)
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  4. Georgetown Univ., Washington, D.C. (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1444078
Alternate Identifier(s):
OSTI ID: 1456287
Report Number(s):
SAND-2018-3447J
Journal ID: ISSN 2196-0216; 663959; TRN: US1900966
Grant/Contract Number:  
AC04-94AL85000; FG02-07ER15895
Resource Type:
Accepted Manuscript
Journal Name:
ChemElectroChem
Additional Journal Information:
Journal Volume: 5; Journal Issue: 17; Journal ID: ISSN 2196-0216
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; In situ EC-NMR; Stripline NMR Detection; Li-ion Battery Chemistry; In situ or Operando Characterization of Batteries

Citation Formats

Sorte, Eric Glenn, Banek, Nathan A., Wagner, Michael J., Alam, Todd M., and Tong, YuYe Jay. In situ Stripline Electrochemical NMR for Batteries. United States: N. p., 2018. Web. doi:10.1002/celc.201800434.
Sorte, Eric Glenn, Banek, Nathan A., Wagner, Michael J., Alam, Todd M., & Tong, YuYe Jay. In situ Stripline Electrochemical NMR for Batteries. United States. doi:10.1002/celc.201800434.
Sorte, Eric Glenn, Banek, Nathan A., Wagner, Michael J., Alam, Todd M., and Tong, YuYe Jay. Mon . "In situ Stripline Electrochemical NMR for Batteries". United States. doi:10.1002/celc.201800434. https://www.osti.gov/servlets/purl/1444078.
@article{osti_1444078,
title = {In situ Stripline Electrochemical NMR for Batteries},
author = {Sorte, Eric Glenn and Banek, Nathan A. and Wagner, Michael J. and Alam, Todd M. and Tong, YuYe Jay},
abstractNote = {Here, there exist some long outstanding technical challenges that continue to be of hindrance to fully harnessing the unique investigative advantages of nuclear magnetic resonance (NMR) spectroscopy in the in situ investigation of rechargeable battery chemistry. For instance, the conducting materials and circuitry necessary for an operational battery always deteriorate the coil–based NMR sensitivity when placed inside the coil, and the shape mismatch between them leads to low sample filling factors and even higher detection limits. We report herein a novel and successful adaptation of stripline NMR detection that integrates seamlessly the NMR detection with construction of an electro–chemical device in general (or a battery in particular) which leads to a technique with much higher detection sensitivity, higher sample filling factors, and which is particularly suitable for mass–limited samples.},
doi = {10.1002/celc.201800434},
journal = {ChemElectroChem},
number = 17,
volume = 5,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Side view of the stripline detector showing the dimension d, the distance between the ground plates. (b) Front view of the central stripline with dimesons l and w indicated. The stripline detector is cut from a 35 μm thick copper sheet and can be made in anymore » physical dimensions appropriate for the battery under investigation. For optimum performance, l/w should be approximately 5, while w/d should be approximately 1. The sensitive region is above and below the narrow neck (w) of the stripline. (c) Li-ion pouch cell schematic. The stripline detector (A) is covered in Kapton to isolate it electrically from the electrolyte and further isolated from the anode (D) and cathode (E) by a Celguard separator (C). The components are enclosed in a laminated Al pouch cell material (B). (d) A pouch cell battery mounted on the homebuilt EC-NMR probe. (e) Circuit diagram of the stripline EC-NMR probe. Several frequency-selective filtering stages are shown to isolate the DC potentiostat current from the RF NMR circuitry. The inset in (e) shows the 7Li NMR signal-to-noise sensitivity (S/N) of the stripline detector to varying concentration (C) of LiCI dissolved in water obtained in a 9.39 T magnet (155.5 MHz) using a home-made stripline detector. The dotted red line is linear guide to the eye.« less

Save / Share:

Works referenced in this record:

Editorial: Organic and Molecular Electrochemistry
journal, April 2017


Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries
journal, April 2016


In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells
journal, June 2013

  • Blanc, Frédéric; Leskes, Michal; Grey, Clare P.
  • Accounts of Chemical Research, Vol. 46, Issue 9
  • DOI: 10.1021/ar400022u

Observation of Methanol Behavior in Fuel Cells In Situ by NMR Spectroscopy
journal, March 2012

  • Han, Oc Hee; Han, Kee Sung; Shin, Chang Woo
  • Angewandte Chemie International Edition, Vol. 51, Issue 16
  • DOI: 10.1002/anie.201108330

A Microfluidic High-Resolution NMR Flow Probe
journal, April 2009

  • Bart, Jacob; Kolkman, Ard J.; Oosthoek-de Vries, Anna Jo
  • Journal of the American Chemical Society, Vol. 131, Issue 14
  • DOI: 10.1021/ja900389x

Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7 Li MRI
journal, November 2015

  • Chang, Hee Jung; Ilott, Andrew J.; Trease, Nicole M.
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b09385

Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR
journal, January 2005

  • Wensink, Henk; Benito-Lopez, Fernando; Hermes, Dorothee C.
  • Lab on a Chip, Vol. 5, Issue 3
  • DOI: 10.1039/b414832k

In situ methods for Li-ion battery research: A review of recent developments
journal, August 2015


In situ NMR of lithium ion batteries: Bulk susceptibility effects and practical considerations
journal, April 2012


NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries
journal, October 2004

  • Grey, Clare P.; Dupré, Nicolas
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020734p

Strong magnetoelectrolysis effect during electrochemical reaction monitored in situ by high-resolution NMR spectroscopy
journal, August 2017

  • Ferreira Gomes, Bruna; Ferreira da Silva, Pollyana; Silva Lobo, Carlos Manuel
  • Analytica Chimica Acta, Vol. 983
  • DOI: 10.1016/j.aca.2017.06.008

Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6 Li/ 7 Li NMR and SEM
journal, July 2015

  • Chang, Hee Jung; Trease, Nicole M.; Ilott, Andrew J.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 29
  • DOI: 10.1021/acs.jpcc.5b03396

Multinuclear in situ magnetic resonance imaging of electrochemical double-layer capacitors
journal, August 2014

  • Ilott, Andrew J.; Trease, Nicole M.; Grey, Clare P.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5536

Materials’ Methods: NMR in Battery Research
journal, November 2016


Direct Detection of Discharge Products in Lithium-Oxygen Batteries by Solid-State NMR Spectroscopy
journal, July 2012

  • Leskes, Michal; Drewett, Nicholas E.; Hardwick, Laurence J.
  • Angewandte Chemie International Edition, Vol. 51, Issue 34
  • DOI: 10.1002/anie.201202183

In situ NMR observation of the lithium extraction/insertion from LiCoO2 cathode
journal, October 2013


Sustainability and in situ monitoring in battery development
journal, December 2016

  • Grey, C. P.; Tarascon, J. M.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4777

In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle
journal, April 2007


Radiofrequency microcoils in magnetic resonance
journal, July 1997


In situ nuclear magnetic resonance investigations of lithium ions in carbon electrode materials using a novel detector
journal, August 2001


7Li MRI of Li batteries reveals location of microstructural lithium
journal, February 2012

  • Chandrashekar, S.; Trease, Nicole M.; Chang, Hee Jung
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3246

Optimization of stripline-based microfluidic chips for high-resolution NMR
journal, December 2009

  • Bart, J.; Janssen, J. W. G.; van Bentum, P. J. M.
  • Journal of Magnetic Resonance, Vol. 201, Issue 2
  • DOI: 10.1016/j.jmr.2009.09.007

In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite
journal, May 2006

  • Letellier, Michel; Chevallier, Frédéric; Béguin, François
  • Journal of Physics and Chemistry of Solids, Vol. 67, Issue 5-6
  • DOI: 10.1016/j.jpcs.2006.01.088

Visualizing skin effects in conductors with MRI: <mml:math altimg="si5.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:msup><mml:mrow/><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>Li MRI experiments and calculations
journal, August 2014

  • Ilott, Andrew J.; Chandrashekar, S.; Klöckner, Andreas
  • Journal of Magnetic Resonance, Vol. 245
  • DOI: 10.1016/j.jmr.2014.06.013

New cell design for in-situ NMR studies of lithium-ion batteries
journal, December 2011

  • Poli, Fabrizia; Kshetrimayum, Jugeshwar S.; Monconduit, Laure
  • Electrochemistry Communications, Vol. 13, Issue 12
  • DOI: 10.1016/j.elecom.2011.07.019

Continuous Flow 1 H and 13 C NMR Spectroscopy in Microfluidic Stripline NMR Chips
journal, January 2017


Stripline probes for nuclear magnetic resonance
journal, November 2007

  • van Bentum, P. J. M.; Janssen, J. W. G.; Kentgens, A. P. M.
  • Journal of Magnetic Resonance, Vol. 189, Issue 1
  • DOI: 10.1016/j.jmr.2007.08.019

High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors
journal, February 2008

  • Kentgens, A. P. M.; Bart, J.; van Bentum, P. J. M.
  • The Journal of Chemical Physics, Vol. 128, Issue 5
  • DOI: 10.1063/1.2833560

Observation of Methanol Behavior in Fuel Cells In Situ by NMR Spectroscopy
journal, March 2012

  • Han, Oc Hee; Han, Kee Sung; Shin, Chang Woo
  • Angewandte Chemie, Vol. 124, Issue 16
  • DOI: 10.1002/ange.201108330

Direct Detection of Discharge Products in Lithium-Oxygen Batteries by Solid-State NMR Spectroscopy
journal, July 2012

  • Leskes, Michal; Drewett, Nicholas E.; Hardwick, Laurence J.
  • Angewandte Chemie, Vol. 124, Issue 34
  • DOI: 10.1002/ange.201202183

In situ 7 Li nuclear magnetic resonance study of the relaxation effect in practical lithium ion batteries
journal, November 2014


Limit of detection of cerebral metabolites by localized NMR spectroscopy using microcoils
journal, April 2008


Real-time 3D imaging of microstructure growth in battery cells using indirect MRI
journal, September 2016

  • Ilott, Andrew J.; Mohammadi, Mohaddese; Chang, Hee Jung
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 39
  • DOI: 10.1073/pnas.1607903113

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.