skip to main content


This content will become publicly available on April 27, 2019

Title: Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode described here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.
ORCiD logo [1] ; ORCiD logo [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Univ. of North Carolina, Chapel Hill, NC (United States). Department of Geological Sciences
Publication Date:
Report Number(s):
Journal ID: ISSN 0094-8276; 662763
Grant/Contract Number:
AC04-94AL85000; NA0003525
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Name: Geophysical Research Letters; Journal ID: ISSN 0094-8276
American Geophysical Union
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
58 GEOSCIENCES; acoustic wave energy; ocean microbarom; thermospheric heating; acoustic dissipation; infrasound ocean-atmosphere coupling
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1438084