skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers

Abstract

The LANL Shear Campaign uses millimeter-scale initially solid shock tubes on the National Ignition Facility to conduct high-energy-density hydrodynamic plasma experiments, capable of reaching energy densities exceeding 100 kJ/cm3. These shock-tube experiments have for the first time reproduced spontaneously emergent coherent structures due to shear-based fluid instabilities [i.e., Kelvin-Helmholtz (KH)], demonstrating hydrodynamic scaling over 8 orders of magnitude in time and velocity. The KH vortices, referred to as “rollers,” and the secondary instabilities, referred to as “ribs,” are used to understand the turbulent kinetic energy contained in the system. Their evolution is used to understand the transition to turbulence and that transition's dependence on initial conditions. Experimental results from these studies are well modeled by the RAGE (Radiation Adaptive Grid Eulerian) hydro-code using the Besnard-Harlow-Rauenzahn turbulent mix model. Information inferred from both the experimental data and the mix model allows us to demonstrate that the specific Turbulent Kinetic Energy (sTKE) in the layer, as calculated from the plan-view structure data, is consistent with the mixing width growth and the RAGE simulations of sTKE.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [2]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [1] more »; ORCiD logo [3]; ORCiD logo [1] « less
  1. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
  2. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
  3. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP)
OSTI Identifier:
1441328
Alternate Identifier(s):
OSTI ID: 1439513
Report Number(s):
LA-UR-18-20068
Journal ID: ISSN 1070-664X; TRN: US1900904
Grant/Contract Number:  
AC52-06NA25396; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 5; Conference: American Physical Society Division of Plasma Physicis ; 2017-10-23 - 2017-10-27 ; Milwaukee, Wisconsin, United States; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; turbulent flows; plasma dynamics; flow instabilities; fluid flows; hydrodynamics; X-ray imaging; viscosity; medical imaging

Citation Formats

Flippo, K. A., Doss, F. W., Merritt, E. C., DeVolder, B. G., Di Stefano, C. A., Bradley, P. A., Capelli, D., Cardenas, T., Desjardins, T. R., Fierro, F., Huntington, C. M., Kline, J. L., Kot, L., Kurien, S., Loomis, E. N., MacLaren, S. A., Murphy, T. J., Nagel, S. R., Perry, T. S., Randolph, R. B., Rasmus, A., and Schmidt, D. W. Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers. United States: N. p., 2018. Web. doi:10.1063/1.5027194.
Flippo, K. A., Doss, F. W., Merritt, E. C., DeVolder, B. G., Di Stefano, C. A., Bradley, P. A., Capelli, D., Cardenas, T., Desjardins, T. R., Fierro, F., Huntington, C. M., Kline, J. L., Kot, L., Kurien, S., Loomis, E. N., MacLaren, S. A., Murphy, T. J., Nagel, S. R., Perry, T. S., Randolph, R. B., Rasmus, A., & Schmidt, D. W. Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers. United States. doi:10.1063/1.5027194.
Flippo, K. A., Doss, F. W., Merritt, E. C., DeVolder, B. G., Di Stefano, C. A., Bradley, P. A., Capelli, D., Cardenas, T., Desjardins, T. R., Fierro, F., Huntington, C. M., Kline, J. L., Kot, L., Kurien, S., Loomis, E. N., MacLaren, S. A., Murphy, T. J., Nagel, S. R., Perry, T. S., Randolph, R. B., Rasmus, A., and Schmidt, D. W. Wed . "Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers". United States. doi:10.1063/1.5027194. https://www.osti.gov/servlets/purl/1441328.
@article{osti_1441328,
title = {Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers},
author = {Flippo, K. A. and Doss, F. W. and Merritt, E. C. and DeVolder, B. G. and Di Stefano, C. A. and Bradley, P. A. and Capelli, D. and Cardenas, T. and Desjardins, T. R. and Fierro, F. and Huntington, C. M. and Kline, J. L. and Kot, L. and Kurien, S. and Loomis, E. N. and MacLaren, S. A. and Murphy, T. J. and Nagel, S. R. and Perry, T. S. and Randolph, R. B. and Rasmus, A. and Schmidt, D. W.},
abstractNote = {The LANL Shear Campaign uses millimeter-scale initially solid shock tubes on the National Ignition Facility to conduct high-energy-density hydrodynamic plasma experiments, capable of reaching energy densities exceeding 100 kJ/cm3. These shock-tube experiments have for the first time reproduced spontaneously emergent coherent structures due to shear-based fluid instabilities [i.e., Kelvin-Helmholtz (KH)], demonstrating hydrodynamic scaling over 8 orders of magnitude in time and velocity. The KH vortices, referred to as “rollers,” and the secondary instabilities, referred to as “ribs,” are used to understand the turbulent kinetic energy contained in the system. Their evolution is used to understand the transition to turbulence and that transition's dependence on initial conditions. Experimental results from these studies are well modeled by the RAGE (Radiation Adaptive Grid Eulerian) hydro-code using the Besnard-Harlow-Rauenzahn turbulent mix model. Information inferred from both the experimental data and the mix model allows us to demonstrate that the specific Turbulent Kinetic Energy (sTKE) in the layer, as calculated from the plan-view structure data, is consistent with the mixing width growth and the RAGE simulations of sTKE.},
doi = {10.1063/1.5027194},
journal = {Physics of Plasmas},
number = 5,
volume = 25,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Observation of a Kelvin-Helmholtz Instability in a High-Energy-Density Plasma on the Omega Laser
journal, July 2009


The high-energy-density counterpropagating shear experiment and turbulent self-heating
journal, December 2013

  • Doss, F. W.; Fincke, J. R.; Loomis, E. N.
  • Physics of Plasmas, Vol. 20, Issue 12
  • DOI: 10.1063/1.4839115

Experiment on the mass-stripping of an interstellar cloud in a high Mach number post-shock flow
journal, May 2007

  • Hansen, J. F.; Robey, H. F.; Klein, R. I.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2714024

Spanwise scale selection in plane mixing layers
journal, February 1993


Modal model for the nonlinear multimode Rayleigh–Taylor instability
journal, August 1996

  • Ofer, D.; Alon, U.; Shvarts, D.
  • Physics of Plasmas, Vol. 3, Issue 8
  • DOI: 10.1063/1.871655

First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, August 2016


A design of a two-dimensional, supersonic KH experiment on OMEGA-EP
journal, December 2013


Development and validation of a turbulent-mix model for variable-density and compressible flows
journal, October 2010


The effect of a short-wavelength mode on the evolution of a long-wavelength perturbation driven by a strong blast wave
journal, December 2004

  • Miles, A. R.; Edwards, M. J.; Blue, B.
  • Physics of Plasmas, Vol. 11, Issue 12
  • DOI: 10.1063/1.1812758

Observation of Single-Mode, Kelvin-Helmholtz Instability in a Supersonic Flow
journal, October 2015


Passive scalar mixing in a planar shear layer with laminar and turbulent inlet conditions
journal, March 2002

  • Pickett, L. M.; Ghandhi, J. B.
  • Physics of Fluids, Vol. 14, Issue 3
  • DOI: 10.1063/1.1445421

Particle dynamics and mixing in a viscously decaying shear layer
journal, June 1991


Instability, mixing, and transition to turbulence in a laser-driven counterflowing shear experiment
journal, January 2013

  • Doss, F. W.; Loomis, E. N.; Welser-Sherrill, L.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4789618

Evolution of surface structure in laser-preheated perturbed materials
journal, February 2017


Structure in turbulent mixing layers and wakes using a chemical reaction
journal, August 1981


Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow
journal, May 2017

  • Wan, W. C.; Malamud, G.; Shimony, A.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982061

Observation and analysis of emergent coherent structures in a high-energy-density shock-driven planar mixing layer experiment
journal, August 2016


Three- and two-dimensional simulations of counter-propagating shear experiments at high energy densities at the National Ignition Facility
journal, November 2015

  • Wang, Ping; Zhou, Ye; MacLaren, Stephan A.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934612

The Shock/Shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facilitya)
journal, May 2015

  • Doss, F. W.; Kline, J. L.; Flippo, K. A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4918354

Three-dimensional instability of Burgers and Lamb–Oseen vortices in a strain field
journal, January 1999


The RAGE radiation-hydrodynamic code
journal, October 2008


Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

Turbulent shear-layer mixing at high Reynolds numbers: effects of inflow conditions
journal, December 1998


Three-dimensional instability during vortex merging
journal, October 2001

  • Meunier, Patrice; Leweke, Thomas
  • Physics of Fluids, Vol. 13, Issue 10
  • DOI: 10.1063/1.1399033

The numerical computation of turbulent flows
journal, March 1974


Streamwise vortex structure in plane mixing layers
journal, September 1986


On generating initial conditions for turbulence models: the case of Rayleigh–Taylor instability turbulent mixing
journal, March 2013


The effect of inflow conditions on the transition to turbulence in large eddy simulations of spatially developing mixing layers
journal, December 2009


Sudden Viscous Dissipation of Compressing Turbulence
journal, March 2016


Bemerkungen über die Entstehung der Turbulenz
journal, January 1921


Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
journal, May 2014


Three-dimensional simulation of a Richtmyer–Meshkov instability with a two-scale initial perturbation
journal, October 2002

  • Cohen, Ronald H.; Dannevik, William P.; Dimits, Andris M.
  • Physics of Fluids, Vol. 14, Issue 10
  • DOI: 10.1063/1.1504452

Experiment on the Mass Stripping of an Interstellar Cloud Following Shock Passage
journal, June 2007

  • Hansen, J. F.; Robey, H. F.; Klein, R. I.
  • The Astrophysical Journal, Vol. 662, Issue 1
  • DOI: 10.1086/514804

Development of Indirectly Driven Shock Tube Targets for Counter-Propagating Shear-Driven Kelvin-Helmholtz Experiments on the National Ignition Facility
journal, September 2016

  • Capelli, D.; Schmidt, D. W.; Cardenas, T.
  • Fusion Science and Technology, Vol. 70, Issue 2
  • DOI: 10.13182/FST15-229

Preparing for ignition experiments on the National Ignition Facility
journal, December 2008


The mixing layer at high Reynolds number: large-structure dynamics and entrainment
journal, December 1976


Two laser-driven mix experiments to study reshock and shear
journal, September 2013


XLVI. Hydrokinetic solutions and observations
journal, November 1871

  • Thomson, William
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 42, Issue 281
  • DOI: 10.1080/14786447108640585

Measurements of the streamwise vortical structures in a plane mixing layer
journal, June 1992


Development of a Big Area BackLighter for high energy density experiments
journal, September 2014

  • Flippo, K. A.; Kline, J. L.; Doss, F. W.
  • Review of Scientific Instruments, Vol. 85, Issue 9
  • DOI: 10.1063/1.4893349

Gated x-ray detector for the National Ignition Facility
journal, October 2006

  • Oertel, John A.; Aragonez, Robert; Archuleta, Tom
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2227439

A high energy density shock driven Kelvin–Helmholtz shear layer experiment
journal, May 2009

  • Hurricane, O. A.; Hansen, J. F.; Robey, H. F.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3096790

The three-dimensional evolution of a plane mixing layer: pairing and transition to turbulence
journal, February 1993


Design for a high energy density Kelvin–Helmholtz experiment
journal, October 2008


Late-Time Mixing Sensitivity to Initial Broadband Surface Roughness in High-Energy-Density Shear Layers
journal, November 2016


Measurements of continuous mix evolution in a high energy density shear flow
journal, April 2014

  • Loomis, E.; Doss, F.; Flippo, K.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4874320

Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow
journal, May 2014

  • Di Stefano, C. A.; Malamud, G.; Henry de Frahan, M. T.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4872223

A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
journal, September 2015

  • Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.
  • Flow, Turbulence and Combustion, Vol. 96, Issue 1
  • DOI: 10.1007/s10494-015-9643-z

The time scale for the transition to turbulence in a high Reynolds number, accelerated flow
journal, March 2003

  • Robey, H. F.; Zhou, Ye; Buckingham, A. C.
  • Physics of Plasmas, Vol. 10, Issue 3
  • DOI: 10.1063/1.1534584

On density effects and large structure in turbulent mixing layers
journal, July 1974


    Works referencing / citing this record:

    Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions
    journal, January 2019

    • Haines, Brian M.; Olson, R. E.; Sweet, W.
    • Physics of Plasmas, Vol. 26, Issue 1
    • DOI: 10.1063/1.5080262

    Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities
    journal, August 2019

    • Zhou, Ye; Clark, Timothy T.; Clark, Daniel S.
    • Physics of Plasmas, Vol. 26, Issue 8
    • DOI: 10.1063/1.5088745

    Modeling hydrodynamics, magnetic fields, and synthetic radiographs for high-energy-density plasma flows in shock-shear targets
    journal, January 2020

    • Lu, Yingchao; Li, Shengtai; Li, Hui
    • Physics of Plasmas, Vol. 27, Issue 1
    • DOI: 10.1063/1.5126149