skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermodynamic constraints on the amplitude of quantum oscillations

Abstract

Magneto-quantum oscillation experiments in high-temperature superconductors show a strong thermally induced suppression of the oscillation amplitude approaching the critical dopings [B. J. Ramshaw et al., Science 348, 317 (2014); H. Shishido et al., Phys. Rev. Lett. 104, 057008 (2010); P. Walmsley et al., Phys. Rev. Lett. 110, 257002 (2013)]—in support of a quantum-critical origin of their phase diagrams. In this paper, we suggest that, in addition to a thermodynamic mass enhancement, these experiments may directly indicate the increasing role of quantum fluctuations that suppress the quantum oscillation amplitude through inelastic scattering. Finally, we show that the traditional theoretical approaches beyond Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals result in a contradiction with the third law of thermodynamics and suggest a way to rectify this problem.

Authors:
 [1];  [2];  [3];  [4]
  1. Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.
  2. Max-Planck-Inst. for Chemical Physics of Solids, Dresden (Germany)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cornell Univ., Ithaca, NY (United States). Lab. for Atomic and Solid State Physics
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Florida State Univ., Tallahassee, FL (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1441302
Report Number(s):
LA-UR-17-22099
Journal ID: ISSN 2469-9950; TRN: US1900886
Grant/Contract Number:  
AC52-06NA25396; DMR-1157490; PHY-1066293
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 12; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; cuprates; pnictides; strongly correlated systems; superconductors

Citation Formats

Shekhter, Arkady, Modic, K. A., McDonald, R. D., and Ramshaw, B. J. Thermodynamic constraints on the amplitude of quantum oscillations. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.95.121106.
Shekhter, Arkady, Modic, K. A., McDonald, R. D., & Ramshaw, B. J. Thermodynamic constraints on the amplitude of quantum oscillations. United States. doi:10.1103/PhysRevB.95.121106.
Shekhter, Arkady, Modic, K. A., McDonald, R. D., and Ramshaw, B. J. Thu . "Thermodynamic constraints on the amplitude of quantum oscillations". United States. doi:10.1103/PhysRevB.95.121106. https://www.osti.gov/servlets/purl/1441302.
@article{osti_1441302,
title = {Thermodynamic constraints on the amplitude of quantum oscillations},
author = {Shekhter, Arkady and Modic, K. A. and McDonald, R. D. and Ramshaw, B. J.},
abstractNote = {Magneto-quantum oscillation experiments in high-temperature superconductors show a strong thermally induced suppression of the oscillation amplitude approaching the critical dopings [B. J. Ramshaw et al., Science 348, 317 (2014); H. Shishido et al., Phys. Rev. Lett. 104, 057008 (2010); P. Walmsley et al., Phys. Rev. Lett. 110, 257002 (2013)]—in support of a quantum-critical origin of their phase diagrams. In this paper, we suggest that, in addition to a thermodynamic mass enhancement, these experiments may directly indicate the increasing role of quantum fluctuations that suppress the quantum oscillation amplitude through inelastic scattering. Finally, we show that the traditional theoretical approaches beyond Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals result in a contradiction with the third law of thermodynamics and suggest a way to rectify this problem.},
doi = {10.1103/PhysRevB.95.121106},
journal = {Physical Review B},
number = 12,
volume = 95,
place = {United States},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: The temperature dependence of quantum oscillations in YBa2Cu3O$_{6+x}$ near optimal doping. a Quantum oscillations in the c-axis resistivity, $ρ_{zz}$, up to 90T for YBa2Cu3O6.86 ($p$ = 0.152, Tc = 92K). [1] b The temperature-dependent amplitude of the oscillations in a closely follows the standard Lifshitz-Kosevich behavior A(T) (blackmore » line).« less

Save / Share:

Works referenced in this record:

Luttinger theorem for a spin-density-wave state
journal, February 1998

  • Altshuler, B. L.; Chubukov, A. V.; Dashevskii, A.
  • Europhysics Letters (EPL), Vol. 41, Issue 4
  • DOI: 10.1209/epl/i1998-00164-y

Theory of the de Haas-van Alphen Effect for a System of Interacting Fermions
journal, March 1961


Quantum kinetic approach to the calculation of the Nernst effect
journal, December 2009


Anomalous Criticality in the Electrical Resistivity of La2-xSrxCuO4
journal, January 2009


Normal-state nodal electronic structure in underdoped high-Tc copper oxides
journal, June 2014

  • Sebastian, Suchitra E.; Harrison, N.; Balakirev, F. F.
  • Nature, Vol. 511, Issue 7507
  • DOI: 10.1038/nature13326

The influence of many-body interactions on the de Haas-van Alphen effect
journal, December 1996


Electronic specific heat of YBa 2 Cu 3 O 6 + x from 1.8 to 300 K
journal, September 1993


On the thermodynamics of independent Landau electrons
journal, October 1981


From quantum matter to high-temperature superconductivity in copper oxides
journal, February 2015

  • Keimer, B.; Kivelson, S. A.; Norman, M. R.
  • Nature, Vol. 518, Issue 7538
  • DOI: 10.1038/nature14165

A theoretical description of the new phases of liquid He 3
journal, April 1975


Departures from quasiparticle behaviour in the de Haas-van Alphen effect
journal, April 1981


Many body effect on oscillatory properties of two-dimensional metals in a magnetic field
journal, January 1993


Anomalous de Haas–van Alphen Oscillations in CeCo In 5
journal, May 2005


Similarity of Scattering Rates in Metals Showing T-Linear Resistivity
journal, February 2013


Quasiparticle Mass Enhancement Close to the Quantum Critical Point in BaFe 2 ( As 1 x P x ) 2
journal, June 2013


Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates
journal, June 2015

  • Harrison, N.; Ramshaw, B. J.; Shekhter, A.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10914

Direct measurement of the upper critical field in cuprate superconductors
journal, February 2014

  • Grissonnanche, G.; Cyr-Choinière, O.; Laliberté, F.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4280

Generalized Lifshitz-Kosevich scaling at quantum criticality from the holographic correspondence
journal, April 2010


Interpretation of the de Haas-van Alphen effect
journal, September 1952

  • Onsager, L.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 43, Issue 344
  • DOI: 10.1080/14786440908521019

de Haas van Alphen effect in heavy fermion compounds—effective mass and non-Fermi-liquid behaviour
journal, April 2008


Transport near a quantum critical point in BaFe2(As1−xPx)2
journal, January 2014

  • Analytis, James G.; Kuo, H-H.; McDonald, Ross D.
  • Nature Physics, Vol. 10, Issue 3
  • DOI: 10.1038/nphys2869

De Haas-Van Alphen Effect in Nearly Magnetic Transition Metals
journal, March 1984


Evolution of the Fermi Surface of BaFe 2 ( As 1 x P x ) 2 on Entering the Superconducting Dome
journal, February 2010


Quasiparticle mass enhancement approaching optimal doping in a high-Tc superconductor
journal, March 2015


Amplitude of the de Haas–van Alphen oscillations for a marginal Fermi liquid
journal, July 1991


Ground-State Energy of a Many-Fermion System. II
journal, June 1960


Fluctuations of the superconducting order parameter as an origin of the Nernst effect
journal, April 2009


    Figures / Tables found in this record:

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.