skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral

Abstract

We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves. These elliptic multiple polylogarithms are closely related to similar functions defined in pure mathematics and string theory. We then focus on the equal-mass and non-equal-mass sunrise integrals, and we develop a formalism that enables us to compute these Feynman integrals in terms of our iterated integrals on elliptic curves. The key idea is to use integration-by-parts identities to identify a set of integral kernels, whose precise form is determined by the branch points of the integral in question. These kernels allow us to express all iterated integrals on an elliptic curve in terms of them. The flexibility of our approach leads us to expect that it will be applicable to a large variety of integrals in high-energy physics.

Authors:
; ; ;
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Humboldt Univ. of Berlin (Germany)
Sponsoring Org.:
USDOE; European Research Council (ERC); German Research Foundation (DFG)
OSTI Identifier:
1441235
Alternate Identifier(s):
OSTI ID: 1457782
Grant/Contract Number:  
AC02-76SF00515; 637019
Resource Type:
Published Article
Journal Name:
Physical Review D
Additional Journal Information:
Journal Name: Physical Review D Journal Volume: 97 Journal Issue: 11; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; electroweak radiative corrections; perturbative QCD; quantum electrodynamics

Citation Formats

Broedel, Johannes, Duhr, Claude, Dulat, Falko, and Tancredi, Lorenzo. Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral. United States: N. p., 2018. Web. doi:10.1103/PhysRevD.97.116009.
Broedel, Johannes, Duhr, Claude, Dulat, Falko, & Tancredi, Lorenzo. Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral. United States. doi:https://doi.org/10.1103/PhysRevD.97.116009
Broedel, Johannes, Duhr, Claude, Dulat, Falko, and Tancredi, Lorenzo. Tue . "Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral". United States. doi:https://doi.org/10.1103/PhysRevD.97.116009.
@article{osti_1441235,
title = {Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral},
author = {Broedel, Johannes and Duhr, Claude and Dulat, Falko and Tancredi, Lorenzo},
abstractNote = {We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves. These elliptic multiple polylogarithms are closely related to similar functions defined in pure mathematics and string theory. We then focus on the equal-mass and non-equal-mass sunrise integrals, and we develop a formalism that enables us to compute these Feynman integrals in terms of our iterated integrals on elliptic curves. The key idea is to use integration-by-parts identities to identify a set of integral kernels, whose precise form is determined by the branch points of the integral in question. These kernels allow us to express all iterated integrals on an elliptic curve in terms of them. The flexibility of our approach leads us to expect that it will be applicable to a large variety of integrals in high-energy physics.},
doi = {10.1103/PhysRevD.97.116009},
journal = {Physical Review D},
number = 11,
volume = 97,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: https://doi.org/10.1103/PhysRevD.97.116009

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Two-loop master integrals for the planar QCD massive corrections to di-photon and di-jet hadro-production
journal, January 2018

  • Becchetti, Matteo; Bonciani, Roberto
  • Journal of High Energy Physics, Vol. 2018, Issue 1
  • DOI: 10.1007/JHEP01(2018)048

The elliptic dilogarithm for the sunset graph
journal, March 2015


Two-loop sunset diagrams with three massive lines
journal, March 2006


Elliptic multiple zeta values and one-loop superstring amplitudes
journal, July 2015

  • Broedel, Johannes; Mafra, Carlos R.; Matthes, Nils
  • Journal of High Energy Physics, Vol. 2015, Issue 7
  • DOI: 10.1007/JHEP07(2015)112

A non-planar two-loop three-point function beyond multiple polylogarithms
journal, June 2017

  • von Manteuffel, Andreas; Tancredi, Lorenzo
  • Journal of High Energy Physics, Vol. 2017, Issue 6
  • DOI: 10.1007/JHEP06(2017)127

Inclusive heavy flavor hadroproduction in NLO QCD: The exact analytic result
journal, January 2010


Fourth order spectral functions for the electron propagator
journal, May 1962


The master two-loop diagram with masses
journal, March 1990

  • Broadhurst, D. J.
  • Zeitschrift f�r Physik C Particles and Fields, Vol. 47, Issue 1
  • DOI: 10.1007/BF01551921

Differential equations method. New technique for massive Feynman diagram calculation
journal, January 1991


SecDec-3.0: Numerical evaluation of multi-scale integrals beyond one loop
journal, November 2015


The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms
journal, October 2014

  • Adams, Luise; Bogner, Christian; Weinzierl, Stefan
  • Journal of Mathematical Physics, Vol. 55, Issue 10
  • DOI: 10.1063/1.4896563

Harmonic Polylogarithms
journal, February 2000

  • Remiddi, E.; Vermaseren, J. A. M.
  • International Journal of Modern Physics A, Vol. 15, Issue 05
  • DOI: 10.1142/S0217751X00000367

The iterated structure of the all-order result for the two-loop sunrise integral
journal, March 2016

  • Adams, Luise; Bogner, Christian; Weinzierl, Stefan
  • Journal of Mathematical Physics, Vol. 57, Issue 3
  • DOI: 10.1063/1.4944722

Elliptic polylogarithms and basic hypergeometric functions
journal, February 2017


Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes
journal, August 2012


Analytic treatment of the two loop equal mass sunrise graph
journal, January 2005


Connection between Feynman integrals having different values of the space-time dimension
journal, November 1996


Star integrals, convolutions and simplices
journal, May 2013

  • Nandan, Dhritiman; Paulos, Miguel F.; Spradlin, Marcus
  • Journal of High Energy Physics, Vol. 2013, Issue 5
  • DOI: 10.1007/JHEP05(2013)105

Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence
journal, December 2016

  • Bonciani, Roberto; Del Duca, Vittorio; Frellesvig, Hjalte
  • Journal of High Energy Physics, Vol. 2016, Issue 12
  • DOI: 10.1007/JHEP12(2016)096

Simple one-dimensional integral representations for two-loop self-energies: the master diagram
journal, July 1995


Harmonic sums and polylogarithms generated by cyclotomic polynomials
journal, October 2011

  • Ablinger, Jakob; Blümlein, Johannes; Schneider, Carsten
  • Journal of Mathematical Physics, Vol. 52, Issue 10
  • DOI: 10.1063/1.3629472

The kite integral to all orders in terms of elliptic polylogarithms
journal, December 2016

  • Adams, Luise; Bogner, Christian; Schweitzer, Armin
  • Journal of Mathematical Physics, Vol. 57, Issue 12
  • DOI: 10.1063/1.4969060

An elliptic generalization of multiple polylogarithms
journal, December 2017


Classical Polylogarithms for Amplitudes and Wilson Loops
journal, October 2010


Differential equations for two-loop four-point functions
journal, July 2000


Geometry of Configurations, Polylogarithms, and Motivic Cohomology
journal, September 1995


Uniqueness of two-loop master contours
journal, October 2012

  • Caron-Huot, Simon; Larsen, Kasper J.
  • Journal of High Energy Physics, Vol. 2012, Issue 10
  • DOI: 10.1007/JHEP10(2012)026

Analytical and numerical methods for massive two-loop self-energy diagrams
journal, January 1995


pySecDec: A toolbox for the numerical evaluation of multi-scale integrals
journal, January 2018


The two-loop sunrise graph with arbitrary masses
journal, May 2013

  • Adams, Luise; Bogner, Christian; Weinzierl, Stefan
  • Journal of Mathematical Physics, Vol. 54, Issue 5
  • DOI: 10.1063/1.4804996

From polygons and symbols to polylogarithmic functions
journal, October 2012

  • Duhr, Claude; Gangl, Herbert; Rhodes, John R.
  • Journal of High Energy Physics, Vol. 2012, Issue 10
  • DOI: 10.1007/JHEP10(2012)075

The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case
journal, July 2015

  • Adams, Luise; Bogner, Christian; Weinzierl, Stefan
  • Journal of Mathematical Physics, Vol. 56, Issue 7
  • DOI: 10.1063/1.4926985

Relations between elliptic multiple zeta values and a special derivation algebra
journal, March 2016

  • Broedel, Johannes; Matthes, Nils; Schlotterer, Oliver
  • Journal of Physics A: Mathematical and Theoretical, Vol. 49, Issue 15
  • DOI: 10.1088/1751-8113/49/15/155203

Dimensionally-regulated pentagon integrals
journal, January 1994


Connection between Feynman integrals having different values of the space-time dimension
text, January 1996


    Works referencing / citing this record:

    Planar Double Box Integral for Top Pair Production with a Closed Top Loop to all orders in the Dimensional Regularization Parameter
    journal, October 2018


    Bounded Collection of Feynman Integral Calabi-Yau Geometries
    journal, January 2019