skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characteristics of Water Vapor Turbulence Profiles in Convective Boundary Layers During the Dry and Wet Seasons Over Darwin

Abstract

Here, this study explores water vapor turbulence in the convective boundary layer (CBL) using the Raman lidar observations from the Atmospheric Radiation Measurement site located at Darwin, Australia. An autocovariance technique was used to separate out the random instrument error from the atmospheric variability during time periods when the CBL is cloud–free, quasi–stationary, and well mixed. We identified 45 cases, comprising of 8 wet and 37 dry seasons events, over the 5–year data record period. The dry season in Darwin is known by warm and dry sunny days, while the wet season is characterized by high humidity and monsoonal rains. The inherent variability of the latter resulted in a more limited number of cases during the wet season. Profiles of the integral scale, variance, coefficient of the structure function, and skewness were analyzed and compared with similar observations from the Raman lidar at the Atmospheric Radiation Measurement Southern Great Plains (SGP) site. The wet season shows larger median variance profiles than the dry season, while the median profile of the variance from the dry season and the SGP site are found to be more comparable particularly between 0.4 and 0.75 z i. The variance and coefficient of the structure functionmore » show qualitatively the same vertical pattern. Furthermore, deeper CBL, larger gradient of water vapor mixing ratio at z i, and the strong correlation with the water vapor variance at z i are seen during the dry season. The median value in the skewness is mostly positive below 0.6 z i unlike the SGP site.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]
  1. The Univ. of Oklahoma, and NOAA/National Severe Storms Lab., Norman, OK (United States)
  2. NOAA Earth System Research Lab., Boulder, CO (United States)
  3. Cleveland State Univ., Cleveland, OH (United States)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1441213
Alternate Identifier(s):
OSTI ID: 1437514
Report Number(s):
PNNL-SA-125855
Journal ID: ISSN 2169-897X
Grant/Contract Number:  
SC0014375; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 123; Journal Issue: 10; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Raman lidar; water vapor turbulence; wet and dry seasons; coefficient of the structure function; Darwin; Oklahoma

Citation Formats

Osman, Mohammed K., Turner, D. D., Heus, T., and Newsom, R. Characteristics of Water Vapor Turbulence Profiles in Convective Boundary Layers During the Dry and Wet Seasons Over Darwin. United States: N. p., 2018. Web. doi:10.1029/2017JD028060.
Osman, Mohammed K., Turner, D. D., Heus, T., & Newsom, R. Characteristics of Water Vapor Turbulence Profiles in Convective Boundary Layers During the Dry and Wet Seasons Over Darwin. United States. doi:10.1029/2017JD028060.
Osman, Mohammed K., Turner, D. D., Heus, T., and Newsom, R. Mon . "Characteristics of Water Vapor Turbulence Profiles in Convective Boundary Layers During the Dry and Wet Seasons Over Darwin". United States. doi:10.1029/2017JD028060. https://www.osti.gov/servlets/purl/1441213.
@article{osti_1441213,
title = {Characteristics of Water Vapor Turbulence Profiles in Convective Boundary Layers During the Dry and Wet Seasons Over Darwin},
author = {Osman, Mohammed K. and Turner, D. D. and Heus, T. and Newsom, R.},
abstractNote = {Here, this study explores water vapor turbulence in the convective boundary layer (CBL) using the Raman lidar observations from the Atmospheric Radiation Measurement site located at Darwin, Australia. An autocovariance technique was used to separate out the random instrument error from the atmospheric variability during time periods when the CBL is cloud–free, quasi–stationary, and well mixed. We identified 45 cases, comprising of 8 wet and 37 dry seasons events, over the 5–year data record period. The dry season in Darwin is known by warm and dry sunny days, while the wet season is characterized by high humidity and monsoonal rains. The inherent variability of the latter resulted in a more limited number of cases during the wet season. Profiles of the integral scale, variance, coefficient of the structure function, and skewness were analyzed and compared with similar observations from the Raman lidar at the Atmospheric Radiation Measurement Southern Great Plains (SGP) site. The wet season shows larger median variance profiles than the dry season, while the median profile of the variance from the dry season and the SGP site are found to be more comparable particularly between 0.4 and 0.75 zi. The variance and coefficient of the structure function show qualitatively the same vertical pattern. Furthermore, deeper CBL, larger gradient of water vapor mixing ratio at zi, and the strong correlation with the water vapor variance at zi are seen during the dry season. The median value in the skewness is mostly positive below 0.6 zi unlike the SGP site.},
doi = {10.1029/2017JD028060},
journal = {Journal of Geophysical Research: Atmospheres},
number = 10,
volume = 123,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model
journal, November 2003

  • Ek, M. B.; Mitchell, K. E.; Lin, Y.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D22
  • DOI: 10.1029/2002JD003296

Radar Measurements of Turbulent Eddy Dissipation Rate in the Troposphere: A Comparison of Techniques
journal, February 1995


Three-dimensional numerical study of turbulence in an entraining mixed layer
journal, October 1974


Identification and analysis of atmospheric states and associated cloud properties for Darwin, Australia: DYNAMIC STATES AND CLOUDS AT DARWIN
journal, March 2012

  • Evans, S. M.; Marchand, R. T.; Ackerman, T. P.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D6
  • DOI: 10.1029/2011JD017010

The Three-Dimensional Structure of Convection in the Atmospheric Surface Layer
journal, November 1980


Biogeography of the Australian monsoon tropics
journal, February 2010


Can Water Vapour Raman Lidar Resolve Profiles of Turbulent Variables in the Convective Boundary Layer?
journal, May 2010

  • Wulfmeyer, Volker; Pal, Sandip; Turner, David D.
  • Boundary-Layer Meteorology, Vol. 136, Issue 2
  • DOI: 10.1007/s10546-010-9494-z

Measuring Second- through Fourth-Order Moments in Noisy Data
journal, October 2000


Towards retrieving critical relative humidity from ground-based remote-sensing observations: Diagnosing Critical Relative Humidity
journal, August 2016

  • Van Weverberg, Kwinten; Boutle, Ian A.; Morcrette, Cyril J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 142, Issue 700
  • DOI: 10.1002/qj.2874

Can one detect small-scale turbulence from standard meteorological radiosondes?
journal, January 2011

  • Wilson, R.; Dalaudier, F.; Luce, H.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 5
  • DOI: 10.5194/amt-4-795-2011

Interannual Variability of the Australian Summer Monsoon at Darwin: 1952–82
journal, March 1986


The Daily Cycle of the Atmospheric Boundary Layer Heights over Pasture Site in Amazonia
journal, February 2015

  • T. de A. T. Neves, Theomar; Fisch, Gilberto
  • American Journal of Environmental Engineering, Vol. 5, Issue 1A
  • DOI: 10.5923/s.ajee.201501.06

Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b
journal, January 2011

  • Behrendt, A.; Pal, S.; Aoshima, F.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue S1
  • DOI: 10.1002/qj.758

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols
journal, January 1998

  • Goldsmith, J. E. M.; Blair, Forest H.; Bisson, Scott E.
  • Applied Optics, Vol. 37, Issue 21
  • DOI: 10.1364/AO.37.004979

Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c
journal, January 2011

  • Corsmeier, U.; Kalthoff, N.; Barthlott, C.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue S1
  • DOI: 10.1002/qj.754

A Review of Planetary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather Environments
journal, June 2015

  • Cohen, Ariel E.; Cavallo, Steven M.; Coniglio, Michael C.
  • Weather and Forecasting, Vol. 30, Issue 3
  • DOI: 10.1175/WAF-D-14-00105.1

The Boulder Atmospheric Observatory
journal, May 1983


The composite shape and structure of coherent eddies in the convective boundary layer
journal, November 1992

  • Williams, A. G.; Hacker, J. M.
  • Boundary-Layer Meteorology, Vol. 61, Issue 3
  • DOI: 10.1007/BF02042933

Convective Systems of the North Australian Monsoon
journal, October 2008

  • Pope, Mick; Jakob, Christian; Reeder, Michael J.
  • Journal of Climate, Vol. 21, Issue 19
  • DOI: 10.1175/2008JCLI2304.1

Boundary Layer Experiment 1996 (BLX96)
journal, June 1997


Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP_2002 observations
journal, October 2005

  • Couvreux, F.; Guichard, F.; Redelsperger, J. -L.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 131, Issue 611
  • DOI: 10.1256/qj.04.167

Variability of the Australian Summer Monsoon at Darwin: 1957–1992
journal, January 1996


Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations
journal, January 1994

  • Cooper, D. I.; Eichinger, W. E.
  • Journal of Geophysical Research, Vol. 99, Issue D11
  • DOI: 10.1029/94JD01944

Water Vapor Flux Measurements from Ground-Based Vertically Pointed Water Vapor Differential Absorption and Doppler Lidars
journal, February 1999


How Long Is Long Enough When Measuring Fluxes and Other Turbulence Statistics?
journal, June 1994


The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements
journal, January 2011

  • Niu, Guo-Yue; Yang, Zong-Liang; Mitchell, Kenneth E.
  • Journal of Geophysical Research, Vol. 116, Issue D12
  • DOI: 10.1029/2010JD015139

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Statistics of Scalar Fields in the Atmospheric Boundary Layer Based on Large-eddy Simulations. Part 1: Free Convection
journal, September 2005


Intercomparison of Planetary Boundary-Layer Parametrizations in the WRF Model for a Single Day from CASES-99
journal, January 2011


Variance scaling in shallow-cumulus-topped mixed layers
journal, October 2007

  • Neggers, R. A. J.; Stevens, B.; Neelin, J. D.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 133, Issue 628
  • DOI: 10.1002/qj.105

In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties: IN SITU AEROSOL PROFILES, 1
journal, March 2004

  • Andrews, Elisabeth; Sheridan, Patrick J.; Ogren, John A.
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D6
  • DOI: 10.1029/2003JD004025

Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection
journal, June 2009

  • Holloway, Christopher E.; Neelin, J. David
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 6
  • DOI: 10.1175/2008JAS2806.1

The Turbulent Structure and Diurnal Growth of the Saharan Atmospheric Boundary Layer
journal, February 2015

  • Garcia-Carreras, L.; Parker, D. J.; Marsham, J. H.
  • Journal of the Atmospheric Sciences, Vol. 72, Issue 2
  • DOI: 10.1175/JAS-D-13-0384.1

Aircraft Evaluation of Ground-Based Raman Lidar Water Vapor Turbulence Profiles in Convective Mixed Layers
journal, May 2014

  • Turner, D. D.; Ferrare, R. A.; Wulfmeyer, V.
  • Journal of Atmospheric and Oceanic Technology, Vol. 31, Issue 5
  • DOI: 10.1175/JTECH-D-13-00075.1

Racoro Extended-Term Aircraft Observations of Boundary Layer Clouds
journal, June 2012

  • Vogelmann, Andrew M.; McFarquhar, Greg M.; Ogren, John A.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 6
  • DOI: 10.1175/BAMS-D-11-00189.1

Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar
journal, August 2013

  • Newsom, Rob K.; Turner, David D.; Goldsmith, John E. M.
  • Journal of Atmospheric and Oceanic Technology, Vol. 30, Issue 8
  • DOI: 10.1175/JTECH-D-12-00138.1

Estimation of boundary layer humidity fluxes and statistics from airborne differential absorption lidar (DIAL)
journal, December 1997

  • Kiemle, Christoph; Ehret, Gerhard; Giez, Andreas
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D24
  • DOI: 10.1029/97JD01112

Radar Observations of Humidity Variability in and above the Marine Atmospheric Boundary Layer
journal, October 1991


The Colorado Wind-Profiling Network
journal, March 1984


Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations
journal, January 2016

  • Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.
  • Atmospheric Measurement Techniques, Vol. 9, Issue 12
  • DOI: 10.5194/amt-9-5833-2016

The Atlantic Stratocumulus Transition Experiment—ASTEX
journal, June 1995


Evaluation of a climate simulation in Europe based on the WRF–NOAH model system: precipitation in Germany
journal, March 2013

  • Warrach-Sagi, Kirsten; Schwitalla, Thomas; Wulfmeyer, Volker
  • Climate Dynamics, Vol. 41, Issue 3-4
  • DOI: 10.1007/s00382-013-1727-7

Comparisons between multiple in-situ aircraft turbulence measurements and radar in the troposphere
journal, October 2014

  • Dehghan, Armin; Hocking, Wayne K.; Srinivasan, Ramesh
  • Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 118
  • DOI: 10.1016/j.jastp.2013.10.009

Atmospheric boundary layer research at Cabauw
journal, February 1996

  • Van Ulden, A. P.; Wieringa, J.
  • Boundary-Layer Meteorology, Vol. 78, Issue 1-2
  • DOI: 10.1007/BF00122486

Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar
journal, January 2015

  • Behrendt, A.; Wulfmeyer, V.; Hammann, E.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 10
  • DOI: 10.5194/acp-15-5485-2015

Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer
journal, September 2017

  • Berg, Larry K.; Newsom, Rob K.; Turner, David D.
  • Journal of Applied Meteorology and Climatology, Vol. 56, Issue 9
  • DOI: 10.1175/JAMC-D-16-0359.1

Remote Sensing of Vertical Velocity Variance and Surface Heat Flux in a Convective Boundary Layer
journal, August 1994


Flux-Profile Relationships in the Atmospheric Surface Layer
journal, March 1971


Simultaneous analog and photon counting detection for Raman lidar
journal, January 2009

  • Newsom, Rob K.; Turner, David D.; Mielke, Bernd
  • Applied Optics, Vol. 48, Issue 20
  • DOI: 10.1364/AO.48.003903

Turbulent Humidity Fluctuations in the Convective Boundary Layer: Case Studies Using Water Vapour Differential Absorption Lidar Measurements
journal, September 2015

  • Muppa, Shravan Kumar; Behrendt, Andreas; Späth, Florian
  • Boundary-Layer Meteorology, Vol. 158, Issue 1
  • DOI: 10.1007/s10546-015-0078-9

Raman Lidar Measurements during the International H 2 O Project. Part I: Instrumentation and Analysis Techniques
journal, February 2006

  • Whiteman, D. N.; Demoz, B.; Rush, K.
  • Journal of Atmospheric and Oceanic Technology, Vol. 23, Issue 2
  • DOI: 10.1175/JTECH1838.1

A UHF Wind Profiler for the Boundary Layer: Brief Description and Initial Results
journal, June 1988


A Simple Parameterization Coupling the Convective Daytime Boundary Layer and Fair-Weather Cumuli
journal, June 2005

  • Berg, Larry K.; Stull, Roland B.
  • Journal of the Atmospheric Sciences, Vol. 62, Issue 6
  • DOI: 10.1175/JAS3437.1

Comments on “A Definitive Approach to Turbulence Statistical Studies in Planetary Boundary Layers”
journal, September 1995


Mean-Field and Second-Moment Budgets in a Baroclinic, Convective Boundary Layer
journal, June 1980


Heat, Moisture, and Vorticity Budget Before and After the Onset of the 1978-79 Southern Hemisphere Summer Monsoon1 [南半球モンスーン(1978-79)開始前後における熱,水蒸気,および渦度の収支]
journal, January 1984

  • Murakami, Takio; Iwashima, Tatsuya; Nakazawa, Tetsuo
  • Journal of the Meteorological Society of Japan. Ser. II, Vol. 62, Issue 1
  • DOI: 10.2151/jmsj1965.62.1_69

Moisture statistics in free convective boundary layers growing into linearly stratified atmospheres: Moisture Statistics in Free Convection
journal, July 2017

  • Mellado, Juan Pedro; Puche, Marc; van Heerwaarden, Chiel C.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 143, Issue 707
  • DOI: 10.1002/qj.3095

    Works referencing / citing this record:

    Validating the Water Vapor Variance Similarity Relationship in the Interfacial Layer Using Observations and Large‐Eddy Simulations
    journal, October 2019

    • Osman, M. K.; Turner, D. D.; Heus, T.
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 20
    • DOI: 10.1029/2019jd030653

    Validating the Water Vapor Variance Similarity Relationship in the Interfacial Layer Using Observations and Large‐Eddy Simulations
    journal, October 2019

    • Osman, M. K.; Turner, D. D.; Heus, T.
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 20
    • DOI: 10.1029/2019jd030653