DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Process for Capturing CO2 from the Atmosphere

Abstract

Here, we describe a process for capturing CO2 from the atmosphere in an industrial plant. The design captures ~1 Mt-CO2/year in a continuous process using an aqueous KOH sorbent coupled to a calcium caustic recovery loop. We describe the design rationale, summarize performance of the major unit operations, and provide a capital cost breakdown developed with an independent consulting engineering firm. We report results from a pilot plant which provides data on performance of the major unit operations. We summarize the energy and material balance computed using an Aspen process simulation. When CO2 is delivered at 15 MPa the design requires either 8.81 GJ of natural gas, or 5.25 GJ of gas and 366 kWhr of electricity, per ton of CO2 captured. Depending on financial assumptions, energy costs, and the specific choice of inputs and outputs, the levelized cost per ton CO2 captured from the atmosphere ranges from 94 to 232 $/t-CO2.

Authors:
ORCiD logo; ; ;
Publication Date:
Research Org.:
Carbon Engineering Ltd., Squamish, BC (Canada)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE); Innovative Clean Energy (ICE) Fund (Canada); Sustainable Development Technology Canada (SDTC); Industrial Research Assistance Program (IRAP) (Canada)
OSTI Identifier:
1441045
Alternate Identifier(s):
OSTI ID: 1438483
Grant/Contract Number:  
FE0026861
Resource Type:
Published Article
Journal Name:
Joule
Additional Journal Information:
Journal Name: Joule Journal Volume: 2 Journal Issue: 8; Journal ID: ISSN 2542-4351
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 29 ENERGY PLANNING, POLICY, AND ECONOMY; Air capture; direct air capture; process design; cost assessment; pilot plant data

Citation Formats

Keith, David W., Holmes, Geoffrey, St. Angelo, David, and Heidel, Kenton. A Process for Capturing CO2 from the Atmosphere. United States: N. p., 2018. Web. doi:10.1016/j.joule.2018.05.006.
Keith, David W., Holmes, Geoffrey, St. Angelo, David, & Heidel, Kenton. A Process for Capturing CO2 from the Atmosphere. United States. https://doi.org/10.1016/j.joule.2018.05.006
Keith, David W., Holmes, Geoffrey, St. Angelo, David, and Heidel, Kenton. Wed . "A Process for Capturing CO2 from the Atmosphere". United States. https://doi.org/10.1016/j.joule.2018.05.006.
@article{osti_1441045,
title = {A Process for Capturing CO2 from the Atmosphere},
author = {Keith, David W. and Holmes, Geoffrey and St. Angelo, David and Heidel, Kenton},
abstractNote = {Here, we describe a process for capturing CO2 from the atmosphere in an industrial plant. The design captures ~1 Mt-CO2/year in a continuous process using an aqueous KOH sorbent coupled to a calcium caustic recovery loop. We describe the design rationale, summarize performance of the major unit operations, and provide a capital cost breakdown developed with an independent consulting engineering firm. We report results from a pilot plant which provides data on performance of the major unit operations. We summarize the energy and material balance computed using an Aspen process simulation. When CO2 is delivered at 15 MPa the design requires either 8.81 GJ of natural gas, or 5.25 GJ of gas and 366 kWhr of electricity, per ton of CO2 captured. Depending on financial assumptions, energy costs, and the specific choice of inputs and outputs, the levelized cost per ton CO2 captured from the atmosphere ranges from 94 to 232 $/t-CO2.},
doi = {10.1016/j.joule.2018.05.006},
journal = {Joule},
number = 8,
volume = 2,
place = {United States},
year = {Wed Aug 01 00:00:00 EDT 2018},
month = {Wed Aug 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.joule.2018.05.006

Citation Metrics:
Cited by: 529 works
Citation information provided by
Web of Science

Save / Share:

Works referencing / citing this record:

A review of gasification of bio-oil for gas production
journal, January 2019

  • Zheng, Ji-Lu; Zhu, Ya-Hong; Zhu, Ming-Qiang
  • Sustainable Energy & Fuels, Vol. 3, Issue 7
  • DOI: 10.1039/c8se00553b

A review of gasification of bio-oil for gas production
journal, January 2019

  • Zheng, Ji-Lu; Zhu, Ya-Hong; Zhu, Ming-Qiang
  • Sustainable Energy & Fuels, Vol. 3, Issue 7
  • DOI: 10.1039/c8se00553b

A generalized approach for selecting solar energy system configurations for a wide range of applications
journal, January 2019

  • Doron, Pinchas; Karni, Jacob; Slocum, Alexander
  • MRS Energy & Sustainability, Vol. 6
  • DOI: 10.1557/mre.2019.10

Rational Design of Novel Catalysts with Atomic Layer Deposition for the Reduction of Carbon Dioxide
journal, August 2019

  • Chen, Zhangsen; Zhang, Gaixia; Prakash, Jai
  • Advanced Energy Materials, Vol. 9, Issue 37
  • DOI: 10.1002/aenm.201900889

A parametric study of the techno‐economics of direct CO 2 air capture systems using solid adsorbents
journal, November 2018

  • Sinha, Anshuman; Realff, Matthew J.
  • AIChE Journal, Vol. 65, Issue 7
  • DOI: 10.1002/aic.16607

Kristall‐Engineering: ein Blick in die Zukunft
journal, February 2019


Direct capture and conversion of CO 2 from air by growing a cyanobacterial consortium at pH up to 11.2
journal, April 2019

  • Ataeian, Maryam; Liu, Yihua; Canon‐Rubio, Karen Andrea
  • Biotechnology and Bioengineering, Vol. 116, Issue 7
  • DOI: 10.1002/bit.26974

H 2 ‐free Synthesis of Aromatic, Cyclic and Linear Oxygenates from CO 2
journal, January 2020

  • Gomez, Laura Quintana; Shehab, Amal K.; Al‐Shathr, Ali
  • ChemSusChem, Vol. 13, Issue 3
  • DOI: 10.1002/cssc.201902340

Investigating Electrode Flooding in a Flowing Electrolyte, Gas‐Fed Carbon Dioxide Electrolyzer
journal, December 2019

  • Leonard, McLain E.; Clarke, Lauren E.; Forner‐Cuenca, Antoni
  • ChemSusChem, Vol. 13, Issue 2
  • DOI: 10.1002/cssc.201902547

Pd/C‐catalyzed reduction of NaHCO 3 into formate with 2‐pyrrolidone under hydrothermal conditions
journal, March 2019

  • Zhu, Yanjie; Yang, Yang; Wang, Xiaoguang
  • Energy Science & Engineering, Vol. 7, Issue 3
  • DOI: 10.1002/ese3.317

Climate change vulnerability assessment of species
journal, October 2018

  • Foden, Wendy B.; Young, Bruce E.; Akçakaya, H. Resit
  • Wiley Interdisciplinary Reviews: Climate Change, Vol. 10, Issue 1
  • DOI: 10.1002/wcc.551

Physical and policy pathways to net‐zero emissions industry
journal, December 2019

  • Bataille, Christopher G. F.
  • WIREs Climate Change, Vol. 11, Issue 2
  • DOI: 10.1002/wcc.633

Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling
journal, February 2019

  • Breyer, Christian; Fasihi, Mahdi; Aghahosseini, Arman
  • Mitigation and Adaptation Strategies for Global Change, Vol. 25, Issue 1
  • DOI: 10.1007/s11027-019-9847-y

Heterogeneous molecular catalysts for electrocatalytic CO2 reduction
journal, May 2019


Power-to-X (PtX) aus „Überschussstrom“ in Deutschland – Ökonomische Analyse
journal, August 2019

  • Drünert, Sebastian; Neuling, Ulf; Timmerberg, Sebastian
  • Zeitschrift für Energiewirtschaft, Vol. 43, Issue 3
  • DOI: 10.1007/s12398-019-00256-7

Towards a cultural political economy of mitigation deterrence by negative emissions technologies (NETs)
journal, January 2018

  • Markusson, Nils; McLaren, Duncan; Tyfield, David
  • Global Sustainability, Vol. 1
  • DOI: 10.1017/sus.2018.10

Negative Emission Potential of Direct Air Capture Powered by Renewable Excess Electricity in Europe
journal, October 2018

  • Wohland, Jan; Witthaut, Dirk; Schleussner, Carl-Friedrich
  • Earth's Future, Vol. 6, Issue 10
  • DOI: 10.1029/2018ef000954

Supply Considerations for Scaling Up Clean Cooking Fuels for Household Energy in Low‐ and Middle‐Income Countries
journal, December 2019


Crowd oil not crude oil
journal, April 2019


An inter-model assessment of the role of direct air capture in deep mitigation pathways
journal, July 2019


The technological and economic prospects for CO2 utilization and removal
journal, November 2019


Practical constraints on atmospheric methane removal
journal, March 2020


The renaissance of the Sabatier reaction and its applications on Earth and in space
journal, March 2019


Carbon dioxide storage through mineral carbonation
journal, January 2020

  • Snæbjörnsdóttir, Sandra Ó.; Sigfússon, Bergur; Marieni, Chiara
  • Nature Reviews Earth & Environment, Vol. 1, Issue 2
  • DOI: 10.1038/s43017-019-0011-8

Liquid organic hydrogen carriers (LOHCs) – techno-economic analysis of LOHCs in a defined process chain
journal, January 2019

  • Niermann, M.; Drünert, S.; Kaltschmitt, M.
  • Energy & Environmental Science, Vol. 12, Issue 1
  • DOI: 10.1039/c8ee02700e

The mutual dependence of negative emission technologies and energy systems
journal, January 2019

  • Creutzig, Felix; Breyer, Christian; Hilaire, Jérôme
  • Energy & Environmental Science, Vol. 12, Issue 6
  • DOI: 10.1039/c8ee03682a

A call to (green) arms: a rallying cry for green chemistry and engineering for CO 2 capture, utilisation and storage
journal, January 2018

  • Leclaire, Julien; Heldebrant, David J.
  • Green Chemistry, Vol. 20, Issue 22
  • DOI: 10.1039/c8gc01962b

Synergetic conversion of microalgae and CO 2 into value-added chemicals under hydrothermal conditions
journal, January 2019

  • Yang, Yang; Zhong, Heng; He, Runtian
  • Green Chemistry, Vol. 21, Issue 6
  • DOI: 10.1039/c8gc03645d

Surface strategies for catalytic CO 2 reduction: from two-dimensional materials to nanoclusters to single atoms
journal, January 2019

  • Wang, Liming; Chen, Wenlong; Zhang, Doudou
  • Chemical Society Reviews, Vol. 48, Issue 21
  • DOI: 10.1039/c9cs00163h

A new perspective on global renewable energy systems: why trade in energy carriers matters
journal, January 2019

  • Schmidt, Johannes; Gruber, Katharina; Klingler, Michael
  • Energy & Environmental Science, Vol. 12, Issue 7
  • DOI: 10.1039/c9ee00223e

The health and climate impacts of carbon capture and direct air capture
journal, January 2019

  • Jacobson, Mark Z.
  • Energy & Environmental Science, Vol. 12, Issue 12
  • DOI: 10.1039/c9ee02709b

Convergent production of 2,5-furandicarboxylic acid from biomass and CO 2
journal, January 2019

  • Zhou, Hua; Xu, Huanghui; Wang, Xueke
  • Green Chemistry, Vol. 21, Issue 11
  • DOI: 10.1039/c9gc00869a

Bio-inspired nanozyme: a hydratase mimic in a zeolitic imidazolate framework
journal, January 2019

  • Chen, Jinxing; Huang, Liang; Wang, Qingqing
  • Nanoscale, Vol. 11, Issue 13
  • DOI: 10.1039/c9nr01093a

Protecting effect of mass transport during electrochemical reduction of oxygenated carbon dioxide feedstocks
journal, January 2019

  • Williams, Kindle; Corbin, Nathan; Zeng, Joy
  • Sustainable Energy & Fuels, Vol. 3, Issue 5
  • DOI: 10.1039/c9se00024k

Enhanced carbon dioxide removal from coupled direct air capture–bioenergy systems
journal, January 2019

  • Sagues, William J.; Park, Sunkyu; Jameel, Hasan
  • Sustainable Energy & Fuels, Vol. 3, Issue 11
  • DOI: 10.1039/c9se00384c

Grid-scale energy storage with net-zero emissions: comparing the options
journal, January 2019

  • Yao, Joseph G.; Bui, Mai; Dowell, Niall Mac
  • Sustainable Energy & Fuels, Vol. 3, Issue 11
  • DOI: 10.1039/c9se00689c

Supported molten-salt membranes for carbon dioxide permeation
journal, January 2019

  • Mutch, Greg A.; Qu, Liu; Triantafyllou, Georgios
  • Journal of Materials Chemistry A, Vol. 7, Issue 21
  • DOI: 10.1039/c9ta01979k

Declining CO 2 price paths
journal, October 2019

  • Daniel, Kent D.; Litterman, Robert B.; Wagner, Gernot
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 42
  • DOI: 10.1073/pnas.1817444116

Toward electrochemical synthesis of cement—An electrolyzer-based process for decarbonating CaCO 3 while producing useful gas streams
journal, September 2019

  • Ellis, Leah D.; Badel, Andres F.; Chiang, Miki L.
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 23
  • DOI: 10.1073/pnas.1821673116

Integration of thermochemical water splitting with CO 2 direct air capture
journal, November 2019

  • Brady, Casper; Davis, Mark E.; Xu, Bingjun
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 50
  • DOI: 10.1073/pnas.1915951116

Costs to achieve target net emissions reductions in the US electric sector using direct air capture
journal, July 2019

  • Supekar, Sarang D.; Lim, Tae-Hwan; Skerlos, Steven J.
  • Environmental Research Letters, Vol. 14, Issue 8
  • DOI: 10.1088/1748-9326/ab30aa

(Mis)conceptions about modeling of negative emissions technologies
journal, September 2019

  • Rickels, Wilfried; Merk, Christine; Reith, Fabian
  • Environmental Research Letters, Vol. 14, Issue 10
  • DOI: 10.1088/1748-9326/ab3ab4

Geoengineering and geographers: Rewriting the Earth in what image?
journal, September 2018


The future of bioenergy
journal, December 2019

  • Reid, Walter V.; Ali, Mariam K.; Field, Christopher B.
  • Global Change Biology, Vol. 26, Issue 1
  • DOI: 10.1111/gcb.14883

What would it take for renewably powered electrosynthesis to displace petrochemical processes?
journal, April 2019


How and to which extent can the gas sector contribute to a climate-neutral European energy system? A qualitative approach
journal, June 2019

  • Lebelhuber, Christian; Steinmüller, Horst
  • Energy, Sustainability and Society, Vol. 9, Issue 1
  • DOI: 10.1186/s13705-019-0207-2

Process intensification technologies for CO2 capture and conversion – a review
journal, January 2020

  • Adamu, Abdullahi; Russo-Abegão, Fernando; Boodhoo, Kamelia
  • BMC Chemical Engineering, Vol. 2, Issue 1
  • DOI: 10.1186/s42480-019-0026-4

Edible Microorganisms—An Overlooked Technology Option to Counteract Agricultural Expansion
journal, May 2019


An Integrated Approach to Determining the Capacity of Ecosystems to Supply Ecosystem Services into Life Cycle Assessment for a Carbon Capture System
journal, January 2020

  • Morales Mora, Miguel A.; Martínez Bravo, Rene D.; Farell Baril, Carole
  • Applied Sciences, Vol. 10, Issue 2
  • DOI: 10.3390/app10020622

The Potential Role of Direct Air Capture in the German Energy Research Program—Results of a Multi-Dimensional Analysis
journal, September 2019

  • Viebahn, Peter; Scholz, Alexander; Zelt, Ole
  • Energies, Vol. 12, Issue 18
  • DOI: 10.3390/en12183443

Technoeconomic Evaluation of a Process Capturing CO2 Directly from Air
journal, August 2019

  • Wijesiri, Romesh Pramodya; Knowles, Gregory Paul; Yeasmin, Hasina
  • Processes, Vol. 7, Issue 8
  • DOI: 10.3390/pr7080503