skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ X-ray Absorption Spectroscopy Studies of Discharge Reactions in a Thick Cathode of a Lithium Sulfur Battery

Abstract

Lithium sulfur (Li-S) batteries are well known for their high theoretical specific capacities, but are plagued with scientific obstacles that make practical implementation of the technology impossible. The success of Li-S batteries will likely necessitate the use of thick sulfur cathodes that enable high specific energy densities. However, little is known about the fundamental reaction mechanisms and chemical processes that take place in thick cathodes, as most research has focused on studying thinner cathodes that enable high performance. In this study, in situ X-ray absorption spectroscopy at the sulfur K-edge is used to examine the back of a 115 μm thick Li-S cathode during discharge. Our results show that in such systems, where electrochemical reactions between sulfur and lithium are likely to proceed preferentially toward the front of the cathode, lithium polysulfide dianions formed in this region diffuse to the back of the cathode during discharge. We show that high conversion of elemental sulfur is achieved by chemical reactions between elemental sulfur and polysulfide dianions of intermediate chain length (Li2Sx, 4 ≤ x ≤ 6). Our work suggests that controlling the formation and diffusion of intermediate chain length polysulfide dianions is crucial for insuring full utilization of thick sulfur cathodes.

Authors:
 [1];  [2];  [3];  [3];  [4]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  4. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division and Environmental Energy Technologies Division
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1440947
Grant/Contract Number:  
AC02-05CH11231; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 164; Journal Issue: 2; Related Information: © The Author(s) 2016. Published by ECS. All rights reserved.; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; battery; in situ; lithium sulfur; polymer electrolyte; polysulfide; x-ray absorption spectroscopy

Citation Formats

Wujcik, Kevin H., Wang, Dunyang Rita, Pascal, Tod A., Prendergast, David, and Balsara, Nitash P. In Situ X-ray Absorption Spectroscopy Studies of Discharge Reactions in a Thick Cathode of a Lithium Sulfur Battery. United States: N. p., 2016. Web. doi:10.1149/2.1441614jes.
Wujcik, Kevin H., Wang, Dunyang Rita, Pascal, Tod A., Prendergast, David, & Balsara, Nitash P. In Situ X-ray Absorption Spectroscopy Studies of Discharge Reactions in a Thick Cathode of a Lithium Sulfur Battery. United States. doi:10.1149/2.1441614jes.
Wujcik, Kevin H., Wang, Dunyang Rita, Pascal, Tod A., Prendergast, David, and Balsara, Nitash P. Thu . "In Situ X-ray Absorption Spectroscopy Studies of Discharge Reactions in a Thick Cathode of a Lithium Sulfur Battery". United States. doi:10.1149/2.1441614jes. https://www.osti.gov/servlets/purl/1440947.
@article{osti_1440947,
title = {In Situ X-ray Absorption Spectroscopy Studies of Discharge Reactions in a Thick Cathode of a Lithium Sulfur Battery},
author = {Wujcik, Kevin H. and Wang, Dunyang Rita and Pascal, Tod A. and Prendergast, David and Balsara, Nitash P.},
abstractNote = {Lithium sulfur (Li-S) batteries are well known for their high theoretical specific capacities, but are plagued with scientific obstacles that make practical implementation of the technology impossible. The success of Li-S batteries will likely necessitate the use of thick sulfur cathodes that enable high specific energy densities. However, little is known about the fundamental reaction mechanisms and chemical processes that take place in thick cathodes, as most research has focused on studying thinner cathodes that enable high performance. In this study, in situ X-ray absorption spectroscopy at the sulfur K-edge is used to examine the back of a 115 μm thick Li-S cathode during discharge. Our results show that in such systems, where electrochemical reactions between sulfur and lithium are likely to proceed preferentially toward the front of the cathode, lithium polysulfide dianions formed in this region diffuse to the back of the cathode during discharge. We show that high conversion of elemental sulfur is achieved by chemical reactions between elemental sulfur and polysulfide dianions of intermediate chain length (Li2Sx, 4 ≤ x ≤ 6). Our work suggests that controlling the formation and diffusion of intermediate chain length polysulfide dianions is crucial for insuring full utilization of thick sulfur cathodes.},
doi = {10.1149/2.1441614jes},
journal = {Journal of the Electrochemical Society},
number = 2,
volume = 164,
place = {United States},
year = {2016},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Polysulfide Shuttle Study in the Li/S Battery System
journal, January 2004

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 11, p. A1969-A1976
  • DOI: 10.1149/1.1806394

Critical Link between Materials Chemistry and Cell-Level Design for High Energy Density and Low Cost Lithium-Sulfur Transportation Battery
journal, January 2015

  • Eroglu, Damla; Zavadil, Kevin R.; Gallagher, Kevin G.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0611506jes

Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes
journal, February 2013


Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification
journal, April 2012

  • Barchasz, Céline; Molton, Florian; Duboc, Carole
  • Analytical Chemistry, Vol. 84, Issue 9
  • DOI: 10.1021/ac2032244

Fingerprinting Lithium-Sulfur Battery Reaction Products by X-ray Absorption Spectroscopy
journal, January 2014

  • Wujcik, Kevin H.; Velasco-Velez, Juan; Wu, Cheng Hao
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.078406jes

Lithium Polysulfide Radical Anions in Ether-Based Solvents
journal, August 2016

  • Wujcik, Kevin H.; Wang, Dunyang Rita; Raghunathan, Aditya
  • The Journal of Physical Chemistry C, Vol. 120, Issue 33
  • DOI: 10.1021/acs.jpcc.6b04264

Formation of lithium polysulfides in aprotic media
journal, January 1977

  • Rauh, R. D.; Shuker, F. S.; Marston, J. M.
  • Journal of Inorganic and Nuclear Chemistry, Vol. 39, Issue 10
  • DOI: 10.1016/0022-1902(77)80198-X

Cell energy density and electrolyte/sulfur ratio in Li–S cells
journal, October 2014


Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review
journal, January 2013

  • Bresser, Dominic; Passerini, Stefano; Scrosati, Bruno
  • Chemical Communications, Vol. 49, Issue 90
  • DOI: 10.1039/c3cc46131a

Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy
journal, September 2013

  • Cuisinier, Marine; Cabelguen, Pierre-Etienne; Evers, Scott
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 19
  • DOI: 10.1021/jz401763d

Review on Li-Sulfur Battery Systems: an Integral Perspective
journal, May 2015

  • Rosenman, Ariel; Markevich, Elena; Salitra, Gregory
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500212

Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

Lithium Sulfur Battery: Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions
journal, January 1988

  • Yamin, H.; Gorenshtein, A.; Penciner, J.
  • Journal of The Electrochemical Society, Vol. 135, Issue 5, p. 1045-1048
  • DOI: 10.1149/1.2095868

Advances in Li–S batteries
journal, January 2010

  • Ji, Xiulei; Nazar, Linda F.
  • Journal of Materials Chemistry, Vol. 20, Issue 44, p. 9821-9826
  • DOI: 10.1039/b925751a

Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries
journal, January 2014

  • Cuisinier, M.; Cabelguen, P. -E.; Adams, B. D.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00372A

Operando Characterization of Intermediates Produced in a Lithium-Sulfur Battery
journal, January 2015

  • Gorlin, Yelena; Siebel, Armin; Piana, Michele
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0081507jes

X-ray Absorption Spectra of Dissolved Polysulfides in Lithium–Sulfur Batteries from First-Principles
journal, April 2014

  • Pascal, Tod A.; Wujcik, Kevin H.; Velasco-Velez, Juan
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 9
  • DOI: 10.1021/jz500260s

Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy
journal, January 2014

  • Lowe, Michael A.; Gao, Jie; Abruña, Héctor D.
  • RSC Advances, Vol. 4, Issue 35
  • DOI: 10.1039/c4ra01388c

Method for the Determination of Inorganic Polysulfide Distribution in Aquatic Systems
journal, April 2006

  • Kamyshny, Alexey; Ekeltchik, Irina; Gun, Jenny
  • Analytical Chemistry, Vol. 78, Issue 8
  • DOI: 10.1021/ac051854a

Understanding the Charging Mechanism of Lithium-Sulfur Batteries Using Spatially Resolved Operando X-Ray Absorption Spectroscopy
journal, January 2016

  • Gorlin, Yelena; Patel, Manu U. M.; Freiberg, Anna
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0631606jes

Rechargeable Lithium Sulfur Battery
journal, May 2003

  • Cheon, Sang-Eun; Ko, Ki-Seok; Cho, Ji-Hoon
  • Journal of The Electrochemical Society, Vol. 150, Issue 6, p. A800-A805
  • DOI: 10.1149/1.1571533

Radical or Not Radical: Revisiting Lithium-Sulfur Electrochemistry in Nonaqueous Electrolytes
journal, January 2015

  • Cuisinier, Marine; Hart, Connor; Balasubramanian, Mahalingam
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201401801

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

High-Energy-Density Lithium–Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes
journal, April 2016


Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries
journal, December 2014

  • Wang, Qiang; Zheng, Jianming; Walter, Eric
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0851503jes

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

X-ray spectroscopy as a probe for lithium polysulfide radicals
journal, January 2015

  • Pascal, Tod A.; Pemmaraju, C. D.; Prendergast, David
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 12
  • DOI: 10.1039/C4CP05316H

Experimental and Theoretical Analysis of Products and Reaction Intermediates of Lithium–Sulfur Batteries
journal, May 2014

  • Cañas, Natalia A.; Fronczek, David N.; Wagner, Norbert
  • The Journal of Physical Chemistry C, Vol. 118, Issue 23
  • DOI: 10.1021/jp5013208

X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components
journal, February 2014

  • Patel, Manu U. M.; Arčon, Iztok; Aquilanti, Giuliana
  • ChemPhysChem, Vol. 15, Issue 5
  • DOI: 10.1002/cphc.201300972

    Works referencing / citing this record:

    Understanding the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando X-ray Absorption Spectroscopy
    journal, March 2019


    Understanding the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando X-ray Absorption Spectroscopy
    journal, March 2019