skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Mechanism and Function of Group II Chaperonins

Abstract

We report protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1-MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substrates of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function and how their unique properties underlie their contribution to maintaining cellular proteostasis.

Authors:
 [1];  [2];  [3]
  1. Stanford Univ., CA (United States). Department of Biology
  2. Stanford Univ., CA (United States). Biophysics Program
  3. Stanford Univ., CA (United States). Department of Biology and Department of Genetics
Publication Date:
Research Org.:
Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1440550
Alternate Identifier(s):
OSTI ID: 1246436
Grant/Contract Number:  
SC0008504
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Molecular Biology
Additional Journal Information:
Journal Volume: 427; Journal Issue: 18; Journal ID: ISSN 0022-2836
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Lopez, Tom, Dalton, Kevin, and Frydman, Judith. The Mechanism and Function of Group II Chaperonins. United States: N. p., 2015. Web. https://doi.org/10.1016/j.jmb.2015.04.013.
Lopez, Tom, Dalton, Kevin, & Frydman, Judith. The Mechanism and Function of Group II Chaperonins. United States. https://doi.org/10.1016/j.jmb.2015.04.013
Lopez, Tom, Dalton, Kevin, and Frydman, Judith. Thu . "The Mechanism and Function of Group II Chaperonins". United States. https://doi.org/10.1016/j.jmb.2015.04.013. https://www.osti.gov/servlets/purl/1440550.
@article{osti_1440550,
title = {The Mechanism and Function of Group II Chaperonins},
author = {Lopez, Tom and Dalton, Kevin and Frydman, Judith},
abstractNote = {We report protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1-MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substrates of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function and how their unique properties underlie their contribution to maintaining cellular proteostasis.},
doi = {10.1016/j.jmb.2015.04.013},
journal = {Journal of Molecular Biology},
number = 18,
volume = 427,
place = {United States},
year = {2015},
month = {4}
}

Journal Article:

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Kinetics of Formation of Native Ribonuclease During Oxidation of the Reduced Polypeptide Chain
journal, September 1961

  • Anfinsen, C. B.; Haber, E.; Sela, M.
  • Proceedings of the National Academy of Sciences, Vol. 47, Issue 9
  • DOI: 10.1073/pnas.47.9.1309

The Search for Folding Intermediates and the Mechanism of Protein Folding
journal, June 2008


The folding of single domain proteins—have we reached a consensus?
journal, February 2011


Effects of macromolecular crowding on protein folding and aggregation
journal, December 1999


Folding of Newly Translated Proteins In Vivo: The Role of Molecular Chaperones
journal, June 2001


Folding the proteome
journal, July 2013

  • Braselmann, Esther; Chaney, Julie L.; Clark, Patricia L.
  • Trends in Biochemical Sciences, Vol. 38, Issue 7
  • DOI: 10.1016/j.tibs.2013.05.001

Molecular Chaperone Functions in Protein Folding and Proteostasis
journal, June 2013


Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells
journal, January 2006


A cradle for new proteins: trigger factor at the ribosome
journal, April 2005

  • Maier, Timm; Ferbitz, Lars; Deuerling, Elke
  • Current Opinion in Structural Biology, Vol. 15, Issue 2
  • DOI: 10.1016/j.sbi.2005.03.005

Two Families of Chaperonin: Physiology and Mechanism
journal, November 2007


Molecular Chaperones in the Cytosol: from Nascent Chain to Folded Protein
journal, March 2002


Multiple chaperonins in bacteria – why so many?
journal, July 2009


Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei
journal, December 2009


The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex
journal, August 1997

  • Xu, Zhaohui; Horwich, Arthur L.; Sigler, Paul B.
  • Nature, Vol. 388, Issue 6644
  • DOI: 10.1038/41944

Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones
journal, July 1994

  • Frydman, Judith; Nimmesgern, Elmar; Ohtsuka, Kenzo
  • Nature, Vol. 370, Issue 6485
  • DOI: 10.1038/370111a0

PhLP3 Modulates CCT-mediated Actin and Tubulin Folding via Ternary Complexes with Substrates
journal, March 2006

  • Stirling, Peter C.; Cuéllar, Jorge; Alfaro, Gabriel A.
  • Journal of Biological Chemistry, Vol. 281, Issue 11
  • DOI: 10.1074/jbc.M513235200

Structure of the Molecular Chaperone Prefoldin
journal, November 2000


Structures of the Gβ-CCT and PhLP1–Gβ-CCT complexes reveal a mechanism for G-protein β-subunit folding and Gβγ dimer assembly
journal, February 2015

  • Plimpton, Rebecca L.; Cuéllar, Jorge; Lai, Chun Wan J.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 8
  • DOI: 10.1073/pnas.1419595112

Regulatory interaction of phosducin-like protein with the cytosolic chaperonin complex
journal, June 2002

  • McLaughlin, J. N.; Thulin, C. D.; Hart, S. J.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 12
  • DOI: 10.1073/pnas.112075699

MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin
journal, December 1999


Yeast Phosducin-Like Protein 2 Acts as a Stimulatory Co-Factor for the Folding of Actin by the Chaperonin CCT via a Ternary Complex
journal, August 2009

  • McCormack, Elizabeth A.; Altschuler, Gabriel M.; Dekker, Carien
  • Journal of Molecular Biology, Vol. 391, Issue 1
  • DOI: 10.1016/j.jmb.2009.06.003

TCP1 complex is a molecular chaperone in tubulin biogenesis
journal, July 1992

  • Yaffe, Michael B.; Farr, George W.; Miklos, David
  • Nature, Vol. 358, Issue 6383
  • DOI: 10.1038/358245a0

The CCT Chaperonin Promotes Activation of the Anaphase-Promoting Complex through the Generation of Functional Cdc20
journal, July 2003


A yeast TCP-1-like protein is required for actin function in vivo.
journal, September 1994

  • Vinh, D. B.; Drubin, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 91, Issue 19
  • DOI: 10.1073/pnas.91.19.9116

Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies
journal, November 2008

  • Yam, Alice Y.; Xia, Yu; Lin, Hen-Tzu Jill
  • Nature Structural & Molecular Biology, Vol. 15, Issue 12
  • DOI: 10.1038/nsmb.1515

Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution
journal, December 1995

  • Braig, Kerstin; Adams, Paul D.; Brünger, Axel T.
  • Nature Structural & Molecular Biology, Vol. 2, Issue 12
  • DOI: 10.1038/nsb1295-1083

The crystal structure of the bacterial chaperonln GroEL at 2.8 Å
journal, October 1994

  • Braig, Kerstin; Otwinowski, Zbyszek; Hegde, Rashmi
  • Nature, Vol. 371, Issue 6498
  • DOI: 10.1038/371578a0

Crystal Structure of Group II Chaperonin in the Open State
journal, October 2010


The molecular chaperone TF55: Assesment of symmetry
journal, March 1994


Three conformations of an archaeal chaperonin, TF55 from Sulfolobus shibatae
journal, February 2000

  • Schoehn, Guy; Quaite-Randall, Elsie; Jiménez, José L.
  • Journal of Molecular Biology, Vol. 296, Issue 3
  • DOI: 10.1006/jmbi.2000.3505

Flexible interwoven termini determine the thermal stability of thermosomes
journal, May 2013


Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits.
journal, December 1992


The eighth Cct gene, Cctq, encoding the theta subunit of the cytosolic chaperonin containing TCP-1
journal, January 1995


Structure of the Substrate Binding Domain of the Thermosome, an Archaeal Group II Chaperonin
journal, October 1997


Crystal structure of the β-apical domain of the thermosome reveals structural plasticity in the protrusion region 1 1Edited by D. Rees
journal, August 2000

  • Bosch, Gundula; Baumeister, Wolfgang; Essen, Lars-Oliver
  • Journal of Molecular Biology, Vol. 301, Issue 1
  • DOI: 10.1006/jmbi.2000.3955

Mechanism of nucleotide sensing in group II chaperonins: Nucleotide sensing in group II chaperonins
journal, December 2011

  • Pereira, Jose H.; Ralston, Corie Y.; Douglas, Nicholai R.
  • The EMBO Journal, Vol. 31, Issue 3
  • DOI: 10.1038/emboj.2011.468

Crystal Structure of the Thermosome, the Archaeal Chaperonin and Homolog of CCT
journal, April 1998


Programmed Cell Death Protein 5 Interacts with the Cytosolic Chaperonin Containing Tailless Complex Polypeptide 1 (CCT) to Regulate β-Tubulin Folding
journal, February 2014

  • Tracy, Christopher M.; Gray, Amy J.; Cuéllar, Jorge
  • Journal of Biological Chemistry, Vol. 289, Issue 7
  • DOI: 10.1074/jbc.M113.542159

Analysis of the Interaction between the Eukaryotic Chaperonin CCT and Its Substrates Actin and Tubulin
journal, August 2001

  • Llorca, Oscar; Martín-Benito, Jaime; Gómez-Puertas, Paulino
  • Journal of Structural Biology, Vol. 135, Issue 2
  • DOI: 10.1006/jsbi.2001.4359

Eukaryotic type II chaperonin CCT interacts with actin through specific subunits
journal, December 1999

  • Llorca, Oscar; McCormack, Elizabeth A.; Hynes, Gillian
  • Nature, Vol. 402, Issue 6762
  • DOI: 10.1038/45294

Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin
journal, December 2010

  • Muñoz, Inés G.; Yébenes, Hugo; Zhou, Min
  • Nature Structural & Molecular Biology, Vol. 18, Issue 1
  • DOI: 10.1038/nsmb.1971

Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT
journal, December 2002


Structure of the complex between the cytosolic chaperonin CCT and phosducin-like protein
journal, December 2004

  • Martin-Benito, J.; Bertrand, S.; Hu, T.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 50
  • DOI: 10.1073/pnas.0405070101

The structure of CCT–Hsc70NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin
journal, July 2008

  • Cuéllar, Jorge; Martín-Benito, Jaime; Scheres, Sjors H. W.
  • Nature Structural & Molecular Biology, Vol. 15, Issue 8
  • DOI: 10.1038/nsmb.1464

Chaperonins: two rings for folding
journal, August 2011


Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT
journal, June 2008

  • Booth, Christopher R.; Meyer, Anne S.; Cong, Yao
  • Nature Structural & Molecular Biology, Vol. 15, Issue 7
  • DOI: 10.1038/nsmb.1436

4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement
journal, March 2010

  • Cong, Y.; Baker, M. L.; Jakana, J.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 11
  • DOI: 10.1073/pnas.0913774107

The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins
journal, June 2011

  • Dekker, Carien; Roe, S. Mark; McCormack, Elizabeth A.
  • The EMBO Journal, Vol. 30, Issue 15
  • DOI: 10.1038/emboj.2011.208

The inter-ring arrangement of the cytosolic chaperonin CCT
journal, February 2007

  • Martín-Benito, Jaime; Grantham, Julie; Boskovic, Jasminka
  • EMBO reports, Vol. 8, Issue 3
  • DOI: 10.1038/sj.embor.7400894

The Molecular Architecture of the Eukaryotic Chaperonin TRiC/CCT
journal, May 2012


Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling
journal, February 2012

  • Kalisman, N.; Adams, C. M.; Levitt, M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 8
  • DOI: 10.1073/pnas.1119472109

A Gradient of ATP Affinities Generates an Asymmetric Power Stroke Driving the Chaperonin TRIC/CCT Folding Cycle
journal, October 2012


Specificity in chaperonin-mediated protein folding
journal, May 1995

  • Tian, Guoling; Vainberg, Irina E.; Tap, William D.
  • Nature, Vol. 375, Issue 6528
  • DOI: 10.1038/375250a0

Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets
journal, November 2004

  • Spiess, Christoph; Meyer, Anne S.; Reissmann, Stefanie
  • Trends in Cell Biology, Vol. 14, Issue 11
  • DOI: 10.1016/j.tcb.2004.09.015

Chaperonins: The hunt for the Group II mechanism
journal, June 2008

  • Bigotti, Maria Giulia; Clarke, Anthony R.
  • Archives of Biochemistry and Biophysics, Vol. 474, Issue 2
  • DOI: 10.1016/j.abb.2008.03.015

Crystal Structures of a Group II Chaperonin Reveal the Open and Closed States Associated with the Protein Folding Cycle
journal, June 2010

  • Pereira, Jose H.; Ralston, Corie Y.; Douglas, Nicholai R.
  • Journal of Biological Chemistry, Vol. 285, Issue 36
  • DOI: 10.1074/jbc.M110.125344

Mechanism of folding chamber closure in a group II chaperonin
journal, January 2010

  • Zhang, Junjie; Baker, Matthew L.; Schröder, Gunnar F.
  • Nature, Vol. 463, Issue 7279
  • DOI: 10.1038/nature08701

Cryo-EM Structure of a Group II Chaperonin in the Prehydrolysis ATP-Bound State Leading to Lid Closure
journal, May 2011


Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins
journal, April 2007

  • Reissmann, Stefanie; Parnot, Charles; Booth, Christopher R.
  • Nature Structural & Molecular Biology, Vol. 14, Issue 5
  • DOI: 10.1038/nsmb1236

ATP Dependent Rotational Motion of Group II Chaperonin Observed by X-ray Single Molecule Tracking
journal, May 2013


The Asymmetric ATPase Cycle of the Thermosome: Elucidation of the Binding, Hydrolysis and Product-release Steps
journal, September 2006

  • Bigotti, Maria Giulia; Bellamy, Stuart R. W.; Clarke, Anthony R.
  • Journal of Molecular Biology, Vol. 362, Issue 4
  • DOI: 10.1016/j.jmb.2006.07.064

Reconstitution of the human chaperonin CCT by co-expression of the eight distinct subunits in mammalian cells
journal, March 2012

  • Machida, Kodai; Masutani, Mamiko; Kobayashi, Tominari
  • Protein Expression and Purification, Vol. 82, Issue 1
  • DOI: 10.1016/j.pep.2011.11.010

Closing the Folding Chamber of the Eukaryotic Chaperonin Requires the Transition State of ATP Hydrolysis
journal, May 2003


Dual Action of ATP Hydrolysis Couples Lid Closure to Substrate Release into the Group II Chaperonin Chamber
journal, January 2011


Characterization of Archaeal Group II Chaperonin-ADP-Metal Fluoride Complexes
journal, December 2005

  • Iizuka, Ryo; Yoshida, Takao; Ishii, Noriyuki
  • Journal of Biological Chemistry, Vol. 280, Issue 48
  • DOI: 10.1074/jbc.M506785200

Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under groes
journal, November 1995


Thermodynamics of nucleotide binding to the chaperonin GroEL studied by isothermal titration calorimetry: evidence for noncooperative nucleotide binding
journal, May 1999

  • Terada, Tomoki P.; Kuwajima, Kunihiro
  • Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, Vol. 1431, Issue 2
  • DOI: 10.1016/S0167-4838(99)00049-7

ATPase cycle of an archaeal chaperonin
journal, June 2000

  • Gutsche, Irina; Mihalache, Oana; Baumeister, Wolfgang
  • Journal of Molecular Biology, Vol. 300, Issue 1
  • DOI: 10.1006/jmbi.2000.3833

Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution
journal, September 2011

  • Jiang, Y.; Douglas, N. R.; Conley, N. R.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 41
  • DOI: 10.1073/pnas.1112244108

Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding
journal, July 1994


Elucidation of Steps in the Capture of a Protein Substrate for Efficient Encapsulation by GroE
journal, July 2006

  • Cliff, Matthew J.; Limpkin, Claire; Cameron, Angus
  • Journal of Biological Chemistry, Vol. 281, Issue 30
  • DOI: 10.1074/jbc.M601605200

GroES in the asymmetric GroEL14-GroES7 complex exchanges via an associative mechanism
journal, March 1999

  • Horowitz, P. M.; Lorimer, G. H.; Ybarra, J.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 6
  • DOI: 10.1073/pnas.96.6.2682

Hereditary sensory neuropathy is caused by a mutation in the delta subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct4 ) gene
journal, July 2003

  • Lee, M. -J.; Stephenson, D. A.; Groves, M. J.
  • Human Molecular Genetics, Vol. 12, Issue 15
  • DOI: 10.1093/hmg/ddg198

Protein folding in vivo: the importance of molecular chaperones
journal, February 2000


Tumorigenic Mutations in VHL Disrupt Folding In Vivo by Interfering with Chaperonin Binding
journal, November 2003


Formation of the VHL–Elongin BC Tumor Suppressor Complex Is Mediated by the Chaperonin TRiC
journal, December 1999


Interaction of p53 with the CCT Complex Promotes Protein Folding and Wild-Type p53 Activity
journal, June 2013


Modulation of STAT3 Folding and Function by TRiC/CCT Chaperonin
journal, April 2014


Proteostatic Control of Telomerase Function through TRiC-Mediated Folding of TCAB1
journal, December 2014


Cytosolic chaperonin protects folding intermediates of Gbeta from aggregation by recognizing hydrophobic beta-strands
journal, May 2006

  • Kubota, S.; Kubota, H.; Nagata, K.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 22
  • DOI: 10.1073/pnas.0600195103

The Molecular Chaperone TRiC/CCT Binds to the Trp-Asp 40 (WD40) Repeat Protein WDR68 and Promotes Its Folding, Protein Kinase DYRK1A Binding, and Nuclear Accumulation
journal, November 2014

  • Miyata, Yoshihiko; Shibata, Takeshi; Aoshima, Masato
  • Journal of Biological Chemistry, Vol. 289, Issue 48
  • DOI: 10.1074/jbc.M114.586115

Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding
journal, December 2007


Affinity purification reveals the association of WD40 protein constitutive photomorphogenic 1 with the hetero-oligomeric TCP-1 chaperonin complex in mammalian cells
journal, January 2006

  • Yi, Chunling; Li, Shuting; Wang, Jian
  • The International Journal of Biochemistry & Cell Biology, Vol. 38, Issue 7
  • DOI: 10.1016/j.biocel.2005.12.019

Chaperonin TRiC Promotes the Assembly of polyQ Expansion Proteins into Nontoxic Oligomers
journal, September 2006


Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state
journal, September 2006

  • Kitamura, Akira; Kubota, Hiroshi; Pack, Chan-Gi
  • Nature Cell Biology, Vol. 8, Issue 10
  • DOI: 10.1038/ncb1478

The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions
journal, September 2006

  • Tam, Stephen; Geller, Ron; Spiess, Christoph
  • Nature Cell Biology, Vol. 8, Issue 10
  • DOI: 10.1038/ncb1477

The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation
journal, November 2009

  • Tam, Stephen; Spiess, Christoph; Auyeung, William
  • Nature Structural & Molecular Biology, Vol. 16, Issue 12
  • DOI: 10.1038/nsmb.1700

The TRiC/CCT Chaperone Is Implicated in Alzheimer's Disease Based on Patient GWAS and an RNAi Screen in Aβ-Expressing Caenorhabditis elegans
journal, July 2014


Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein
journal, February 2011


Cellular Chaperonin CCT  Contributes to Rabies Virus Replication during Infection
journal, May 2013


Genome-Scale RNAi Screen for Host Factors Required for HIV Replication
journal, November 2008


Global landscape of HIV–human protein complexes
journal, December 2011

  • Jäger, Stefanie; Cimermancic, Peter; Gulbahce, Natali
  • Nature, Vol. 481, Issue 7381
  • DOI: 10.1038/nature10719

Type D Retrovirus Gag Polyprotein Interacts with the Cytosolic Chaperonin TRiC
journal, March 2001


In vivo newly translated polypeptides are sequestered in a protected folding environment
journal, January 1999


A structural model for GroEL-polypeptide recognition
journal, April 1997

  • Buckle, A. M.; Zahn, R.; Fersht, A. R.
  • Proceedings of the National Academy of Sciences, Vol. 94, Issue 8
  • DOI: 10.1073/pnas.94.8.3571

The Structural Basis of Substrate Recognition by the Eukaryotic Chaperonin TRiC/CCT
journal, November 2014


Conformational Rearrangements of Tail-less Complex Polypeptide 1 (TCP-1) Ring Complex (TRiC)-Bound Actin
journal, April 2007

  • Villebeck, Laila; Persson, Malin; Luan, Shi-Lu
  • Biochemistry, Vol. 46, Issue 17
  • DOI: 10.1021/bi062093o

Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT
journal, November 2012

  • Russmann, F.; Stemp, M. J.; Monkemeyer, L.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 52
  • DOI: 10.1073/pnas.1218836109

EMBOSS: The European Molecular Biology Open Software Suite
journal, June 2000


Electrostatics of nanosystems: Application to microtubules and the ribosome
journal, August 2001

  • Baker, N. A.; Sept, D.; Joseph, S.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 18, p. 10037-10041
  • DOI: 10.1073/pnas.181342398

OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation
journal, November 2012

  • Eastman, Peter; Friedrichs, Mark S.; Chodera, John D.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 1
  • DOI: 10.1021/ct300857j

    Works referencing / citing this record:

    Chaperonin CCT checkpoint function in basal transcription factor TFIID assembly
    journal, December 2018

    • Antonova, Simona V.; Haffke, Matthias; Corradini, Eleonora
    • Nature Structural & Molecular Biology, Vol. 25, Issue 12
    • DOI: 10.1038/s41594-018-0156-z

    On the nature of the optimal form of the holdase‐type chaperone stress response
    journal, August 2019


    Large-scale aggregation analysis of eukaryotic proteins reveals an involvement of intrinsically disordered regions in protein folding
    journal, January 2018


    Insights into the ubiquitin-proteasome system of human embryonic stem cells
    journal, March 2018


    Vacuolar ATPase as a possible therapeutic target in human acute myeloid leukemia
    journal, November 2017

    • Aasebø, Elise; Bartaula-Brevik, Sushma; Hernandez-Valladares, Maria
    • Expert Review of Hematology, Vol. 11, Issue 1
    • DOI: 10.1080/17474086.2018.1407239

    Chaperone-client interactions: Non-specificity engenders multifunctionality
    journal, June 2017

    • Koldewey, Philipp; Horowitz, Scott; Bardwell, James C. A.
    • Journal of Biological Chemistry, Vol. 292, Issue 29
    • DOI: 10.1074/jbc.r117.796862

    Identification of key sites controlling protein functional motions by using elastic network model combined with internal coordinates
    journal, July 2019

    • Zhang, Peng Fei; Su, Ji Guo
    • The Journal of Chemical Physics, Vol. 151, Issue 4
    • DOI: 10.1063/1.5098542

    Cellular Proteomes Drive Tissue-Specific Regulation of the Heat Shock Response
    journal, January 2017

    • Ma, Jian; Grant, Christopher E.; Plagens, Rosemary N.
    • G3: Genes|Genomes|Genetics, Vol. 7, Issue 3
    • DOI: 10.1534/g3.116.038232

    Expression and diagnostic value of CCT3 and IQGAP3 in hepatocellular carcinoma
    journal, July 2016


    Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis
    journal, January 2018


    The proteostasis network provides targets for neurodegeneration
    journal, May 2019

    • Newton, Timothy Mark; Duce, James Alex; Bayle, Elliott David
    • British Journal of Pharmacology, Vol. 176, Issue 18
    • DOI: 10.1111/bph.14643

    Structural and functional analysis of the role of the chaperonin CCT in mTOR complex assembly
    journal, June 2019


    Protein Quality Control by Molecular Chaperones in Neurodegeneration
    journal, April 2017


    Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis
    journal, January 2020


    Structural investigation of a chaperonin in action reveals how nucleotide binding regulates the functional cycle
    journal, September 2018

    • Mas, Guillaume; Guan, Jia-Ying; Crublet, Elodie
    • Science Advances, Vol. 4, Issue 9
    • DOI: 10.1126/sciadv.aau4196

    Pathways of cellular proteostasis in aging and disease
    journal, November 2017

    • Klaips, Courtney L.; Jayaraj, Gopal Gunanathan; Hartl, F. Ulrich
    • The Journal of Cell Biology, Vol. 217, Issue 1
    • DOI: 10.1083/jcb.201709072

    Structural insight into the cooperation of chloroplast chaperonin subunits
    journal, April 2016


    Chaperones in sporadic inclusion body myositis—Validation of proteomic data
    journal, November 2019

    • Güttsches, Anne‐Katrin; Jacobsen, Frank; Schreiner, Anja
    • Muscle & Nerve, Vol. 61, Issue 1
    • DOI: 10.1002/mus.26742

    Chaperoning the Mononegavirales: Current Knowledge and Future Directions
    journal, December 2018

    • Latorre, Victor; Mattenberger, Florian; Geller, Ron
    • Viruses, Vol. 10, Issue 12
    • DOI: 10.3390/v10120699

    The ubiquitin ligase UBR5 suppresses proteostasis collapse in pluripotent stem cells from Huntington’s disease patients
    journal, July 2018


    The chaperonin TRiC/CCT is essential for the action of bacterial glycosylating protein toxins like Clostridium difficile toxins A and B
    journal, September 2018

    • Steinemann, Marcus; Schlosser, Andreas; Jank, Thomas
    • Proceedings of the National Academy of Sciences, Vol. 115, Issue 38
    • DOI: 10.1073/pnas.1807658115

    The CCT chaperonin is a novel regulator of Ca 2+ signaling through modulation of Orai1 trafficking
    journal, September 2018

    • Hodeify, Rawad; Nandakumar, Manjula; Own, Maryam
    • Science Advances, Vol. 4, Issue 9
    • DOI: 10.1126/sciadv.aau1935

    Functional characterization of chaperonin containing T-complex polypeptide-1 and its conserved and novel substrates in Arabidopsis
    journal, March 2019

    • Ahn, Hee-Kyung; Yoon, Joong-Tak; Choi, Ilyeong
    • Journal of Experimental Botany, Vol. 70, Issue 10
    • DOI: 10.1093/jxb/erz099

    Heat shock response in archaea
    journal, November 2018

    • Lemmens, Liesbeth; Baes, Rani; Peeters, Eveline
    • Emerging Topics in Life Sciences, Vol. 2, Issue 4
    • DOI: 10.1042/etls20180024

    E2F coregulates an essential HSF developmental program that is distinct from the heat-shock response
    journal, September 2016

    • Li, Jian; Chauve, Laetitia; Phelps, Grace
    • Genes & Development, Vol. 30, Issue 18
    • DOI: 10.1101/gad.283317.116

    In vivo aspects of protein folding and quality control
    journal, June 2016

    • Balchin, David; Hayer-Hartl, Manajit; Hartl, F. Ulrich
    • Science, Vol. 353, Issue 6294
    • DOI: 10.1126/science.aac4354

    A systematic atlas of chaperome deregulation topologies across the human cancer landscape
    journal, January 2018

    • Hadizadeh Esfahani, Ali; Sverchkova, Angelina; Saez-Rodriguez, Julio
    • PLOS Computational Biology, Vol. 14, Issue 1
    • DOI: 10.1371/journal.pcbi.1005890

    Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science
    journal, January 2016

    • Rother, Martin; Nussbaumer, Martin G.; Renggli, Kasper
    • Chemical Society Reviews, Vol. 45, Issue 22
    • DOI: 10.1039/c6cs00177g

    T-complex protein 1-ring complex enhances retrograde axonal transport by modulating tau phosphorylation
    journal, September 2018

    • Chen, Xu-Qiao; Fang, Fang; Florio, Jazmin B.
    • Traffic, Vol. 19, Issue 11
    • DOI: 10.1111/tra.12610

    A cytosolic chaperone complex controls folding and degradation of type III CD38
    journal, January 2019


    An information theoretic framework reveals a tunable allosteric network in group II chaperonins
    journal, July 2017

    • Lopez, Tom; Dalton, Kevin; Tomlinson, Anthony
    • Nature Structural & Molecular Biology, Vol. 24, Issue 9
    • DOI: 10.1038/nsmb.3440

    Mechanisms of protein homeostasis (proteostasis) maintain stem cell identity in mammalian pluripotent stem cells
    journal, July 2017

    • Noormohammadi, Alireza; Calculli, Giuseppe; Gutierrez-Garcia, Ricardo
    • Cellular and Molecular Life Sciences, Vol. 75, Issue 2
    • DOI: 10.1007/s00018-017-2602-1

    Contribution of the Type II Chaperonin, TRiC/CCT, to Oncogenesis
    journal, November 2015

    • Roh, Soung-Hun; Kasembeli, Moses; Bakthavatsalam, Deenadayalan
    • International Journal of Molecular Sciences, Vol. 16, Issue 11
    • DOI: 10.3390/ijms161125975

    Characterization of group II chaperonins from an acidothermophilic archaeon Picrophilus torridus
    journal, June 2016

    • Yamamoto, Yohei Y.; Tsuchida, Kanako; Noguchi, Keiichi
    • FEBS Open Bio, Vol. 6, Issue 7
    • DOI: 10.1002/2211-5463.12090

    REP-X: An Evolution-guided Strategy for the Rational Design of Cysteine-less Protein Variants
    journal, February 2020