skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The reality of artificial viscosity

Abstract

Artificial viscosity is used in the computer simulation of high Reynolds number flows and is one of the oldest numerical artifices. In this work, I will describe the origin and the interpretation of artificial viscosity as a physical phenomenon. The basis of this interpretation is the finite scale theory, which describes the evolution of integral averages of the fluid solution over finite (length) scales. I will outline the derivation of finite scale Navier–Stokes equations and highlight the particular properties of the equations that depend on the finite scales. Those properties include enslavement, inviscid dissipation, and a law concerning the partition of total flux of conserved quantities into advective and diffusive components.

Authors:
ORCiD logo [1]
  1. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP) (NA-10)
OSTI Identifier:
1440435
Report Number(s):
LA-UR-17-24540
Journal ID: ISSN 0938-1287
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Shock Waves
Additional Journal Information:
Journal Volume: 29; Journal Issue: 1; Journal ID: ISSN 0938-1287
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; 42 ENGINEERING; Artificial viscosity; Computational fluid dynamics; Finite scale

Citation Formats

Margolin, L. G. The reality of artificial viscosity. United States: N. p., 2018. Web. doi:10.1007/s00193-018-0810-8.
Margolin, L. G. The reality of artificial viscosity. United States. doi:10.1007/s00193-018-0810-8.
Margolin, L. G. Sat . "The reality of artificial viscosity". United States. doi:10.1007/s00193-018-0810-8. https://www.osti.gov/servlets/purl/1440435.
@article{osti_1440435,
title = {The reality of artificial viscosity},
author = {Margolin, L. G.},
abstractNote = {Artificial viscosity is used in the computer simulation of high Reynolds number flows and is one of the oldest numerical artifices. In this work, I will describe the origin and the interpretation of artificial viscosity as a physical phenomenon. The basis of this interpretation is the finite scale theory, which describes the evolution of integral averages of the fluid solution over finite (length) scales. I will outline the derivation of finite scale Navier–Stokes equations and highlight the particular properties of the equations that depend on the finite scales. Those properties include enslavement, inviscid dissipation, and a law concerning the partition of total flux of conserved quantities into advective and diffusive components.},
doi = {10.1007/s00193-018-0810-8},
journal = {Shock Waves},
number = 1,
volume = 29,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Antidiffusive Velocities for Multipass Donor Cell Advection
journal, January 1998

  • Margolin, Len; Smolarkiewicz, Piotr K.
  • SIAM Journal on Scientific Computing, Vol. 20, Issue 3
  • DOI: 10.1137/S106482759324700X

MPDATA: A Finite-Difference Solver for Geophysical Flows
journal, March 1998

  • Smolarkiewicz, Piotr K.; Margolin, Len G.
  • Journal of Computational Physics, Vol. 140, Issue 2
  • DOI: 10.1006/jcph.1998.5901

Molecular mixing in Rayleigh–Taylor instability
journal, April 1994


Finite scale theory: The role of the observer in classical fluid flow
journal, April 2014


Large-eddy simulations of convective boundary layers using nonoscillatory differencing
journal, September 1999

  • Margolin, Len G.; Smolarkiewicz, Piotr K.; Sorbjan, Zbigniew
  • Physica D: Nonlinear Phenomena, Vol. 133, Issue 1-4
  • DOI: 10.1016/S0167-2789(99)00083-4

Modeling turbulent flow with implicit LES
journal, January 2006


High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws
journal, October 1984

  • Sweby, P. K.
  • SIAM Journal on Numerical Analysis, Vol. 21, Issue 5
  • DOI: 10.1137/0721062

Use of artificial viscosity in multidimensional fluid dynamic calculations
journal, July 1980


Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer
journal, November 1994


Revisiting Wall Heating
journal, August 2000


Modelling of the interaction of small and large eddies in two dimensional turbulent flows
journal, January 1988

  • Foias, C.; Manley, O.; Temam, R.
  • ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 22, Issue 1
  • DOI: 10.1051/m2an/1988220100931

Heuristic stability theory for finite-difference equations
journal, June 1968


Kolmogorov‐like spectra in decaying three‐dimensional supersonic flows
journal, June 1994

  • Porter, D. H.; Pouquet, A.; Woodward, P. R.
  • Physics of Fluids, Vol. 6, Issue 6
  • DOI: 10.1063/1.868217

Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam
journal, April 1976


Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term
journal, May 2001

  • Winckelmans, Grégoire S.; Wray, Alan A.; Vasilyev, Oleg V.
  • Physics of Fluids, Vol. 13, Issue 5
  • DOI: 10.1063/1.1360192

Discrete thermodynamics
journal, October 2018


Inertial manifolds for nonlinear evolutionary equations
journal, June 1988


A rationale for implicit turbulence modelling
journal, January 2002

  • Margolin, Len G.; Rider, William J.
  • International Journal for Numerical Methods in Fluids, Vol. 39, Issue 9
  • DOI: 10.1002/fld.331

Computing Turbulent Shear Flows — A Convenient Conspiracy
journal, January 1993

  • Oran, Elaine S.; Boris, Jay P.
  • Computers in Physics, Vol. 7, Issue 5
  • DOI: 10.1063/1.4823213

Finite-scale equations for compressible fluid flow
journal, July 2009

  • Margolin, L. G.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 367, Issue 1899
  • DOI: 10.1098/rsta.2008.0290

Finite volume methods and the equations of finite scale: A mimetic approach
journal, January 2008

  • Margolin, L. G.; Shashkov, M.
  • International Journal for Numerical Methods in Fluids, Vol. 56, Issue 8
  • DOI: 10.1002/fld.1592

Generalized hydrodynamics and shock waves
journal, September 1997


Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux
journal, September 1987


On Forward-in-Time Differencing for Fluids: an Eulerian/Semi-Lagrangian Non-Hydrostatic Model for Stratified Flows
journal, January 1997


Electron beam density measurements in shock waves in argon
journal, November 1969


A Method for the Numerical Calculation of Hydrodynamic Shocks
journal, March 1950

  • VonNeumann, J.; Richtmyer, R. D.
  • Journal of Applied Physics, Vol. 21, Issue 3
  • DOI: 10.1063/1.1699639

    Works referencing / citing this record:

    A Relaxation Filtering Approach for Two-Dimensional Rayleigh–Taylor Instability-Induced Flows
    journal, April 2019


    A Relaxation Filtering Approach for Two-Dimensional Rayleigh–Taylor Instability-Induced Flows
    journal, April 2019