skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoscale membranes that chemically isolate and electronically wire up the abiotic/biotic interface

Abstract

By electrochemically coupling microbial and abiotic catalysts, bioelectrochemical systems such as microbial electrolysis cells and microbial electrosynthesis systems synthesize energy-rich chemicals from energy-poor precursors with unmatched efficiency. However, to circumvent chemical incompatibilities between the microbial cells and inorganic materials that result in toxicity, corrosion, fouling, and efficiency-degrading cross-reactions between oxidation and reduction environments, bioelectrochemical systems physically separate the microbial and inorganic catalysts by macroscopic distances, thus introducing ohmic losses, rendering these systems impractical at scale. Here we electrochemically couple an inorganic catalyst, a SnO2 anode, with a microbial catalyst, Shewanella oneidensis, via a 2-nm-thick silica membrane containing -CN and -NO2 functionalized p-oligo(phenylene vinylene) molecular wires. This membrane enables electron flow at 0.51 μA cm-2 from microbial catalysts to the inorganic anode, while blocking small molecule transport. Furthermore the modular architecture avoids chemical incompatibilities without ohmic losses and introduces an immense design space for scale up of bioelectrochemical systems.

Authors:
; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1440377
Alternate Identifier(s):
OSTI ID: 1460352
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 9 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Cornejo, Jose A., Sheng, Hua, Edri, Eran, M. Ajo-Franklin, Caroline, and Frei, Heinz. Nanoscale membranes that chemically isolate and electronically wire up the abiotic/biotic interface. United Kingdom: N. p., 2018. Web. doi:10.1038/s41467-018-04707-6.
Cornejo, Jose A., Sheng, Hua, Edri, Eran, M. Ajo-Franklin, Caroline, & Frei, Heinz. Nanoscale membranes that chemically isolate and electronically wire up the abiotic/biotic interface. United Kingdom. doi:10.1038/s41467-018-04707-6.
Cornejo, Jose A., Sheng, Hua, Edri, Eran, M. Ajo-Franklin, Caroline, and Frei, Heinz. Mon . "Nanoscale membranes that chemically isolate and electronically wire up the abiotic/biotic interface". United Kingdom. doi:10.1038/s41467-018-04707-6.
@article{osti_1440377,
title = {Nanoscale membranes that chemically isolate and electronically wire up the abiotic/biotic interface},
author = {Cornejo, Jose A. and Sheng, Hua and Edri, Eran and M. Ajo-Franklin, Caroline and Frei, Heinz},
abstractNote = {By electrochemically coupling microbial and abiotic catalysts, bioelectrochemical systems such as microbial electrolysis cells and microbial electrosynthesis systems synthesize energy-rich chemicals from energy-poor precursors with unmatched efficiency. However, to circumvent chemical incompatibilities between the microbial cells and inorganic materials that result in toxicity, corrosion, fouling, and efficiency-degrading cross-reactions between oxidation and reduction environments, bioelectrochemical systems physically separate the microbial and inorganic catalysts by macroscopic distances, thus introducing ohmic losses, rendering these systems impractical at scale. Here we electrochemically couple an inorganic catalyst, a SnO2 anode, with a microbial catalyst, Shewanella oneidensis, via a 2-nm-thick silica membrane containing -CN and -NO2 functionalized p-oligo(phenylene vinylene) molecular wires. This membrane enables electron flow at 0.51 μA cm-2 from microbial catalysts to the inorganic anode, while blocking small molecule transport. Furthermore the modular architecture avoids chemical incompatibilities without ohmic losses and introduces an immense design space for scale up of bioelectrochemical systems.},
doi = {10.1038/s41467-018-04707-6},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United Kingdom},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1038/s41467-018-04707-6

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms
journal, March 2011

  • Nevin, Kelly P.; Hensley, Sarah A.; Franks, Ashley E.
  • Applied and Environmental Microbiology, Vol. 77, Issue 9, p. 2882-2886
  • DOI: 10.1128/AEM.02642-10

Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1
journal, January 2012


A comprehensive review of microbial electrochemical systems as a platform technology
journal, December 2013


Separator Characteristics for Increasing Performance of Microbial Fuel Cells
journal, November 2009

  • Zhang, Xiaoyuan; Cheng, Shaoan; Wang, Xin
  • Environmental Science & Technology, Vol. 43, Issue 21
  • DOI: 10.1021/es901631p

Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane
journal, May 2008

  • Call, Douglas; Logan, Bruce E.
  • Environmental Science & Technology, Vol. 42, Issue 9, p. 3401-3406
  • DOI: 10.1021/es8001822

Electrosynthesis of Commodity Chemicals by an Autotrophic Microbial Community
journal, September 2012

  • Marshall, Christopher W.; Ross, Daniel E.; Fichot, Erin B.
  • Applied and Environmental Microbiology, Vol. 78, Issue 23, p. 8412-8420
  • DOI: 10.1128/AEM.02401-12

Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals
journal, April 2015


Visible Light-Induced Hole Injection into Rectifying Molecular Wires Anchored on Co 3 O 4 and SiO 2 Nanoparticles
journal, October 2012

  • Soo, Han Sen; Agiral, Anil; Bachmeier, Andreas
  • Journal of the American Chemical Society, Vol. 134, Issue 41
  • DOI: 10.1021/ja306162g

Integrated Photobioelectrochemical Systems: A Paradigm Shift in Artificial Photosynthesis
journal, April 2017


Determination of surface coverage for tetraphenylporphyrin monolayers using ultraviolet visible absorption and x-ray photoelectron spectroscopies
journal, January 2002

  • Bramblett, Ariana L.; S. Boeckl, Maximiliane; Hauch, Kip D.
  • Surface and Interface Analysis, Vol. 33, Issue 6
  • DOI: 10.1002/sia.1239

Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production
journal, December 2015


Cultivation of an Obligate Fe(II)-Oxidizing Lithoautotrophic Bacterium Using Electrodes
journal, January 2013

  • Summers, Zarath M.; Gralnick, Jeffrey A.; Bond, Daniel R.
  • mBio, Vol. 4, Issue 1
  • DOI: 10.1128/mBio.00420-12

Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives
journal, November 2013

  • Rosenbaum, Miriam A.; Franks, Ashley E.
  • Applied Microbiology and Biotechnology, Vol. 98, Issue 2
  • DOI: 10.1007/s00253-013-5396-6

High Current Generation Coupled to Caustic Production Using a Lamellar Bioelectrochemical System
journal, June 2010

  • Rabaey, Korneel; Bützer, Simone; Brown, Shelley
  • Environmental Science & Technology, Vol. 44, Issue 11
  • DOI: 10.1021/es9037963

Hybrid bioinorganic approach to solar-to-chemical conversion
journal, August 2015

  • Nichols, Eva M.; Gallagher, Joseph J.; Liu, Chong
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 37
  • DOI: 10.1073/pnas.1508075112

Charge Transport through Organic Molecular Wires Embedded in Ultrathin Insulating Inorganic Layer
journal, December 2015


In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA–MtrCAB protein complexes
journal, June 2011


Molecular-wire behaviour in p -phenylenevinylene oligomers
journal, November 1998

  • Davis, William B.; Svec, Walter A.; Ratner, Mark A.
  • Nature, Vol. 396, Issue 6706
  • DOI: 10.1038/23912

Stay connected: Electrical conductivity of microbial aggregates
journal, November 2017


Ultrafast Charge Transfer between Light Absorber and Co 3 O 4 Water Oxidation Catalyst across Molecular Wires Embedded in Silica Membrane
journal, April 2017

  • Edri, Eran; Cooper, Jason K.; Sharp, Ian D.
  • Journal of the American Chemical Society, Vol. 139, Issue 15
  • DOI: 10.1021/jacs.7b01070

Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism
journal, January 2015

  • Rowe, Annette R.; Chellamuthu, Prithiviraj; Lam, Bonita
  • Frontiers in Microbiology, Vol. 5
  • DOI: 10.3389/fmicb.2014.00784

Hierarchical Inorganic Assemblies for Artificial Photosynthesis
journal, August 2016


Electron uptake by iron-oxidizing phototrophic bacteria
journal, February 2014

  • Bose, A.; Gardel, E. J.; Vidoudez, C.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4391

Microbial Electroreduction: Screening for New Cathodic Biocatalysts
journal, September 2014

  • de Campos Rodrigues, Tatiana; Rosenbaum, Miriam A.
  • ChemElectroChem, Vol. 1, Issue 11
  • DOI: 10.1002/celc.201402239

Inorganic core–shell assemblies for closing the artificial photosynthetic cycle
journal, January 2014

  • Yuan, Guangbi; Agiral, Anil; Pellet, Norman
  • Faraday Discuss., Vol. 176
  • DOI: 10.1039/C4FD00150H

Integrated Electromicrobial Conversion of CO2 to Higher Alcohols
journal, March 2012

  • Li, H.; Opgenorth, P. H.; Wernick, D. G.
  • Science, Vol. 335, Issue 6076, p. 1596-1596
  • DOI: 10.1126/science.1217643

Happy together: microbial communities that hook up to swap electrons
journal, November 2016


Microbial electrolysis cells for waste biorefinery: A state of the art review
journal, September 2016


Electrochemically active biofilms: facts and fiction. A review
journal, August 2012


Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells
journal, January 2018

  • Myung, Jaewook; Yang, Wulin; Saikaly, Pascal E.
  • Environmental Science: Water Research & Technology, Vol. 4, Issue 4
  • DOI: 10.1039/C7EW00518K

Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system
journal, September 2009


Simplifying microbial electrosynthesis reactor design
journal, May 2015

  • Giddings, Cloelle G. S.; Nevin, Kelly P.; Woodward, Trevor
  • Frontiers in Microbiology, Vol. 6
  • DOI: 10.3389/fmicb.2015.00468

A Previously Uncharacterized, Nonphotosynthetic Member of the Chromatiaceae Is the Primary CO 2 -Fixing Constituent in a Self-Regenerating Biocathode
journal, November 2014

  • Wang, Zheng; Leary, Dagmar H.; Malanoski, Anthony P.
  • Applied and Environmental Microbiology, Vol. 81, Issue 2
  • DOI: 10.1128/AEM.02947-14

Enzymatic Electrosynthesis of Alkanes by Bioelectrocatalytic Decarbonylation of Fatty Aldehydes
journal, January 2018

  • Abdellaoui, Sofiene; Macazo, Florika C.; Cai, Rong
  • Angewandte Chemie, Vol. 130, Issue 9
  • DOI: 10.1002/ange.201712890

Microbial fuel cells: From fundamentals to applications. A review
journal, July 2017


A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces
journal, June 2015

  • Gross, Benjamin J.; El-Naggar, Mohamed Y.
  • Review of Scientific Instruments, Vol. 86, Issue 6
  • DOI: 10.1063/1.4922853

Microbial electrosynthesis — revisiting the electrical route for microbial production
journal, October 2010

  • Rabaey, Korneel; Rozendal, René A.
  • Nature Reviews Microbiology, Vol. 8, Issue 10, p. 706-716
  • DOI: 10.1038/nrmicro2422

Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode
journal, February 2016

  • Schlager, Stefanie; Dumitru, Liviu Mihai; Haberbauer, Marianne
  • ChemSusChem, Vol. 9, Issue 6
  • DOI: 10.1002/cssc.201501496

Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds
journal, May 2010

  • Nevin, K. P.; Woodard, T. L.; Franks, A. E.
  • mBio, Vol. 1, Issue 2, Article No. e00103-10
  • DOI: 10.1128/mBio.00103-10

Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies
journal, August 2012


Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1
journal, April 2016


Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors
journal, February 2010

  • Zhang, Fang; Saito, Tomonori; Cheng, Shaoan
  • Environmental Science & Technology, Vol. 44, Issue 4
  • DOI: 10.1021/es903009d

Water splitting–biosynthetic system with CO 2 reduction efficiencies exceeding photosynthesis
journal, June 2016


Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system
journal, February 2015

  • Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 8
  • DOI: 10.1073/pnas.1424872112

Cyborgian Material Design for Solar Fuel Production: The Emerging Photosynthetic Biohybrid Systems
journal, March 2017