skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on April 9, 2019

Title: Anomalous Hall effect in the van der Waals bonded ferromagnet Fe 3 - x GeTe 2

Here, we report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe 3–xGeTe 2 (x ≈ 0.36) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρxy/μ0Heff and longitudinal resistivity ρ 2 xxM/μ 0H eff implies that the AHE in Fe 3–xGeTe 2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear- M Hall conductivity σ A xy below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.
Authors:
 [1] ;  [1] ;  [1] ;  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Report Number(s):
BNL-205728-2018-JAAM
Journal ID: ISSN 2469-9950; PRBMDO
Grant/Contract Number:
SC0012704
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 16; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1440350
Alternate Identifier(s):
OSTI ID: 1432424