skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DIY 3D Microparticle Generation from Next Generation Optofluidic Fabrication

Abstract

Complex-shaped microparticles can enhance applications in drug delivery, tissue engineering, and structural materials, although techniques to fabricate these particles remain limited. A microfluidics-based process called optofluidic fabrication that utilizes inertial flows and ultraviolet polymerization has shown great potential for creating highly 3D-shaped particles in a high-throughput manner, but the particle dimensions are mainly at the millimeter scale. Here, a next generation optofluidic fabrication process is presented that utilizes on-the-fly fabricated multiscale fluidic channels producing customized sub-100 µm 3D-shaped microparticles. This flexible design scheme offers a user-friendly platform for rapid prototyping of new 3D particle shapes, providing greater potential for creating impactful engineered microparticles.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]
  1. Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), Troy NY 12180 USA, Engineering Directorate, Lawrence Livermore National Laboratory (LLNL), Livermore CA 94550 USA
  2. Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), Troy NY 12180 USA
  3. Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), Troy NY 12180 USA, School of Biomedical Engineering, Korea University, Seoul 02841 Republic of Korea
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rensselaer Polytechnic Inst., Troy, NY (United States); Korea Univ., Seoul (Korea, Republic of)
Sponsoring Org.:
USDOE; National Science Foundation (NSF); Rensselaer Polytechnic Inst. (United States); Korea Univ. (Korea, Republic of)
OSTI Identifier:
1440257
Alternate Identifier(s):
OSTI ID: 1440258; OSTI ID: 1465317
Report Number(s):
LLNL-JRNL-749963
Journal ID: ISSN 2198-3844
Grant/Contract Number:  
AC52-07NA27344; IIA-1444104
Resource Type:
Published Article
Journal Name:
Advanced Science
Additional Journal Information:
Journal Name: Advanced Science Journal Volume: 5 Journal Issue: 7; Journal ID: ISSN 2198-3844
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
42 ENGINEERING; 3D microparticles; inertial microfluidics; optofluidic fabrication; optofluidics

Citation Formats

Paulsen, Kevin S., Deng, Yanxiang, and Chung, Aram J. DIY 3D Microparticle Generation from Next Generation Optofluidic Fabrication. Germany: N. p., 2018. Web. doi:10.1002/advs.201800252.
Paulsen, Kevin S., Deng, Yanxiang, & Chung, Aram J. DIY 3D Microparticle Generation from Next Generation Optofluidic Fabrication. Germany. doi:10.1002/advs.201800252.
Paulsen, Kevin S., Deng, Yanxiang, and Chung, Aram J. Fri . "DIY 3D Microparticle Generation from Next Generation Optofluidic Fabrication". Germany. doi:10.1002/advs.201800252.
@article{osti_1440257,
title = {DIY 3D Microparticle Generation from Next Generation Optofluidic Fabrication},
author = {Paulsen, Kevin S. and Deng, Yanxiang and Chung, Aram J.},
abstractNote = {Complex-shaped microparticles can enhance applications in drug delivery, tissue engineering, and structural materials, although techniques to fabricate these particles remain limited. A microfluidics-based process called optofluidic fabrication that utilizes inertial flows and ultraviolet polymerization has shown great potential for creating highly 3D-shaped particles in a high-throughput manner, but the particle dimensions are mainly at the millimeter scale. Here, a next generation optofluidic fabrication process is presented that utilizes on-the-fly fabricated multiscale fluidic channels producing customized sub-100 µm 3D-shaped microparticles. This flexible design scheme offers a user-friendly platform for rapid prototyping of new 3D particle shapes, providing greater potential for creating impactful engineered microparticles.},
doi = {10.1002/advs.201800252},
journal = {Advanced Science},
number = 7,
volume = 5,
place = {Germany},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/advs.201800252

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Freestanding loadbearing structures with Z-shaped particles
journal, April 2016


Multiplexed Detection of mRNA Using Porosity-Tuned Hydrogel Microparticles
journal, September 2012

  • Choi, Nak Won; Kim, Jungwook; Chapin, Stephen C.
  • Analytical Chemistry, Vol. 84, Issue 21
  • DOI: 10.1021/ac302128u

Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications
journal, January 2017

  • Choi, Andrew; Seo, Kyoung Duck; Kim, Do Wan
  • Lab on a Chip, Vol. 17, Issue 4
  • DOI: 10.1039/C6LC01023G

Hydrogel microparticles for biosensing
journal, November 2015


Lithographically Designed Conical Microcarriers for Programed Release of Multiple Actives
journal, December 2017

  • Je, Kwanghwi; Kim, Ju Hyeon; Shim, Tae Soup
  • Advanced Materials Interfaces, Vol. 5, Issue 1
  • DOI: 10.1002/admi.201701163

Temporal response of an initially deflected PDMS channel
journal, November 2009


Microarchitecture for a Three-Dimensional Wrinkled Surface Platform
journal, February 2015


Guided and fluidic self-assembly of microstructures using railed microfluidic channels
journal, June 2008

  • Chung, Su Eun; Park, Wook; Shin, Sunghwan
  • Nature Materials, Vol. 7, Issue 7
  • DOI: 10.1038/nmat2208

Fabricating Shaped Microfibers with Inertial Microfluidics
journal, March 2014

  • Nunes, Janine K.; Wu, Chueh-Yu; Amini, Hamed
  • Advanced Materials, Vol. 26, Issue 22
  • DOI: 10.1002/adma.201400268

The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles
journal, April 1972


Role of target geometry in phagocytosis
journal, March 2006

  • Champion, J. A.; Mitragotri, S.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 13
  • DOI: 10.1073/pnas.0600997103

Non-spherical particle generation from 4D optofluidic fabrication
journal, January 2016


Optofluidic fabrication for 3D-shaped particles
journal, April 2015

  • Paulsen, Kevin S.; Di Carlo, Dino; Chung, Aram J.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7976

Engineering fluid flow using sequenced microstructures
journal, May 2013

  • Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2841

Anisotropy in Shape and Ligand-Conjugation of Hybrid Nanoparticulates Manipulates the Mode of Bio-Nano Interaction and Its Outcome
journal, May 2017

  • Wang, Xiaoyou; Lin, Li; Liu, Renfa
  • Advanced Functional Materials, Vol. 27, Issue 31
  • DOI: 10.1002/adfm.201700406

Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels
journal, July 2007

  • Chung, Su Eun; Park, Wook; Park, Hyunsung
  • Applied Physics Letters, Vol. 91, Issue 4
  • DOI: 10.1063/1.2759988

Rapid Software-Based Design and Optical Transient Liquid Molding of Microparticles
journal, October 2015

  • Wu, Chueh-Yu; Owsley, Keegan; Di Carlo, Dino
  • Advanced Materials, Vol. 27, Issue 48
  • DOI: 10.1002/adma.201503308

The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation
journal, June 2017


Optimization of micropillar sequences for fluid flow sculpting
journal, January 2016

  • Stoecklein, Daniel; Wu, Chueh-Yu; Kim, Donghyuk
  • Physics of Fluids, Vol. 28, Issue 1
  • DOI: 10.1063/1.4939512

Celebrating Soft Matter’s 10th Anniversary: Toward jamming by design
journal, January 2015


Stop-flow lithography in a microfluidic device
journal, January 2007

  • Dendukuri, Dhananjay; Gu, Shelley S.; Pregibon, Daniel C.
  • Lab on a Chip, Vol. 7, Issue 7
  • DOI: 10.1039/b703457a

Multifunctional Hydrogel Microparticles by Polymer-Assisted Photolithography
journal, September 2015

  • Li, Bin; He, Muhan; Ramirez, Lisa
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 6
  • DOI: 10.1021/acsami.5b11883

Non-polydimethylsiloxane devices for oxygen-free flow lithography
journal, January 2012

  • Bong, Ki Wan; Xu, Jingjing; Kim, Jong-Ho
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1800

Micropillar sequence designs for fundamental inertial flow transformations
journal, January 2014

  • Stoecklein, Daniel; Wu, Chueh-Yu; Owsley, Keegan
  • Lab Chip, Vol. 14, Issue 21
  • DOI: 10.1039/C4LC00653D

Engineering particle trajectories in microfluidic flows using particle shape
journal, November 2013

  • Uspal, William E.; Burak Eral, H.; Doyle, Patrick S.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3666

Modeling of Oxygen-Inhibited Free Radical Photopolymerization in a PDMS Microfluidic Device
journal, November 2008

  • Dendukuri, Dhananjay; Panda, Priyadarshi; Haghgooie, Ramin
  • Macromolecules, Vol. 41, Issue 22
  • DOI: 10.1021/ma801219w

Fabrication and applications of complex-shaped microparticles via microfluidics
journal, January 2015

  • Seo, K. D.; Kim, D. S.; Sánchez, S.
  • Lab on a Chip, Vol. 15, Issue 18
  • DOI: 10.1039/C5LC90091C

3D printing of self-assembling thermoresponsive nanoemulsions into hierarchical mesostructured hydrogels
journal, January 2017

  • Hsiao, Lilian C.; Badruddoza, Abu Zayed Md; Cheng, Li-Chiun
  • Soft Matter, Vol. 13, Issue 5
  • DOI: 10.1039/C6SM02208A

Automated Design for Microfluid Flow Sculpting: Multiresolution Approaches, Efficient Encoding, and CUDA Implementation
journal, January 2017

  • Stoecklein, Daniel; Davies, Michael; Wubshet, Nadab
  • Journal of Fluids Engineering, Vol. 139, Issue 3
  • DOI: 10.1115/1.4034953

Shape-Controlled Hollow Mesoporous Silica Nanoparticles with Multifunctional Capping for In Vitro Cancer Treatment
journal, July 2017

  • Geng, Hongya; Chen, Weiyu; Xu, Zhi Ping
  • Chemistry - A European Journal, Vol. 23, Issue 45
  • DOI: 10.1002/chem.201701806

    Works referencing / citing this record:

    FlowSculpt: software for efficient design of inertial flow sculpting devices
    journal, January 2019

    • Stoecklein, Daniel; Davies, Michael; de Rutte, Joseph Michael
    • Lab on a Chip, Vol. 19, Issue 19
    • DOI: 10.1039/c9lc00658c

    Degassed micromolding lithography for rapid fabrication of anisotropic hydrogel microparticles with high-resolution and high uniformity
    journal, January 2020

    • Kim, Hyeon Ung; Lim, Yong Jun; Lee, Hyun Jee
    • Lab on a Chip, Vol. 20, Issue 1
    • DOI: 10.1039/c9lc00828d