DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)

Abstract

Currently, there are few techniques that allow true 3D-printing on the nanoscale. The most promising candidate to fill this void is focused electron-beam-induced deposition (FEBID), a resist-free, nanofabrication compatible, direct-write method. The basic working principles of a computer-aided design (CAD) program (3BID) enabling 3D-FEBID is presented and simultaneously released for download. The 3BID capability significantly expands the currently limited toolbox for 3D-nanoprinting, providing access to geometries for optoelectronic, plasmonic, and nanomagnetic applications that were previously unattainable due to the lack of a suitable method for synthesis. In conclusion, the CAD approach supplants trial and error toward more precise/accurate FEBID required for real applications/device prototyping.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [4]; ORCiD logo [4]; ORCiD logo [3];  [3]; ORCiD logo [1]; ORCiD logo [5]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); The Univ. of Tennessee, Knoxville, TN (United States)
  2. Graz Centre for Electron Microscopy, Graz (Austria)
  3. The Univ. of Tennessee, Knoxville, TN (United States)
  4. Univ. of Cambridge, Cambridge (United Kingdom)
  5. Graz Centre for Electron Microscopy, Graz (Austria); Graz Univ. of Technology, Graz (Austria)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1439952
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Nano Materials
Additional Journal Information:
Journal Volume: 1; Journal Issue: 3; Journal ID: ISSN 2574-0970
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 3D-nanoprinting; additive manufacturing; computer-aided design; direct write; focused electron beam induced deposition

Citation Formats

Fowlkes, Jason D., Winkler, Robert, Lewis, Brett B., Fernandez-Pacheco, Amalio, Skoric, Luka, Sanz-Hernandez, Dodalo, Stanford, Michael G., Mutunga, Eva M., Rack, Philip D., and Plank, Harald. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID). United States: N. p., 2018. Web. doi:10.1021/acsanm.7b00342.
Fowlkes, Jason D., Winkler, Robert, Lewis, Brett B., Fernandez-Pacheco, Amalio, Skoric, Luka, Sanz-Hernandez, Dodalo, Stanford, Michael G., Mutunga, Eva M., Rack, Philip D., & Plank, Harald. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID). United States. https://doi.org/10.1021/acsanm.7b00342
Fowlkes, Jason D., Winkler, Robert, Lewis, Brett B., Fernandez-Pacheco, Amalio, Skoric, Luka, Sanz-Hernandez, Dodalo, Stanford, Michael G., Mutunga, Eva M., Rack, Philip D., and Plank, Harald. Wed . "High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)". United States. https://doi.org/10.1021/acsanm.7b00342. https://www.osti.gov/servlets/purl/1439952.
@article{osti_1439952,
title = {High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)},
author = {Fowlkes, Jason D. and Winkler, Robert and Lewis, Brett B. and Fernandez-Pacheco, Amalio and Skoric, Luka and Sanz-Hernandez, Dodalo and Stanford, Michael G. and Mutunga, Eva M. and Rack, Philip D. and Plank, Harald},
abstractNote = {Currently, there are few techniques that allow true 3D-printing on the nanoscale. The most promising candidate to fill this void is focused electron-beam-induced deposition (FEBID), a resist-free, nanofabrication compatible, direct-write method. The basic working principles of a computer-aided design (CAD) program (3BID) enabling 3D-FEBID is presented and simultaneously released for download. The 3BID capability significantly expands the currently limited toolbox for 3D-nanoprinting, providing access to geometries for optoelectronic, plasmonic, and nanomagnetic applications that were previously unattainable due to the lack of a suitable method for synthesis. In conclusion, the CAD approach supplants trial and error toward more precise/accurate FEBID required for real applications/device prototyping.},
doi = {10.1021/acsanm.7b00342},
journal = {ACS Applied Nano Materials},
number = 3,
volume = 1,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Multidimensional materials and device architectures for future hybrid energy storage
journal, September 2016

  • Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12647

Microsupercapacitors as miniaturized energy-storage components for on-chip electronics
journal, November 2016

  • Kyeremateng, Nana Amponsah; Brousse, Thierry; Pech, David
  • Nature Nanotechnology, Vol. 12, Issue 1
  • DOI: 10.1038/nnano.2016.196

Three-dimensional nanomagnetism
journal, June 2017

  • Fernández-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15756

A Review on Electromechanical Devices Fabricated by Additive Manufacturing
journal, August 2016

  • O'Donnell, John; Kim, Myungsun; Yoon, Hwan-Sik
  • Journal of Manufacturing Science and Engineering, Vol. 139, Issue 1
  • DOI: 10.1115/1.4033758

Additive Manufacturing of Metal Structures at the Micrometer Scale
journal, January 2017

  • Hirt, Luca; Reiser, Alain; Spolenak, Ralph
  • Advanced Materials, Vol. 29, Issue 17
  • DOI: 10.1002/adma.201604211

Additive nanomanufacturing – A review
journal, August 2014

  • Engstrom, D. S.; Porter, B.; Pacios, M.
  • Journal of Materials Research, Vol. 29, Issue 17
  • DOI: 10.1557/jmr.2014.159

Gas-assisted focused electron beam and ion beam processing and fabrication
journal, January 2008

  • Utke, Ivo; Hoffmann, Patrik; Melngailis, John
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 26, Issue 4
  • DOI: 10.1116/1.2955728

The future of focused electron beam-induced processing
journal, November 2014


Rapid and Highly Compact Purification for Focused Electron Beam Induced Deposits: A Low Temperature Approach Using Electron Stimulated H 2 O Reactions
journal, June 2014

  • Geier, Barbara; Gspan, Christian; Winkler, Robert
  • The Journal of Physical Chemistry C, Vol. 118, Issue 25
  • DOI: 10.1021/jp503442b

Electron-Beam-Assisted Oxygen Purification at Low Temperatures for Electron-Beam-Induced Pt Deposits: Towards Pure and High-Fidelity Nanostructures
journal, December 2013

  • Plank, Harald; Noh, Joo Hyon; Fowlkes, Jason D.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 2
  • DOI: 10.1021/am4045458

Direct-Write Deposition and Focused-Electron-Beam-Induced Purification of Gold Nanostructures
journal, January 2015

  • Belić, Domagoj; Shawrav, Mostafa M.; Gavagnin, Marco
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 4
  • DOI: 10.1021/am507327y

Pure Platinum Nanostructures Grown by Electron Beam Induced Deposition
journal, September 2013

  • Elbadawi, Chris; Toth, Milos; Lobo, Charlene J.
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 19
  • DOI: 10.1021/am403167d

Highly conductive and pure gold nanostructures grown by electron beam induced deposition
journal, September 2016

  • Shawrav, Mostafa M.; Taus, Philipp; Wanzenboeck, Heinz D.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep34003

Gold Complexes for Focused-Electron-Beam-Induced Deposition
journal, September 2014

  • van Dorp, W. F.; Wu, X.; Mulders, J. J. L.
  • Langmuir, Vol. 30, Issue 40
  • DOI: 10.1021/la502618t

Acetone and the precursor ligand acetylacetone: distinctly different electron beam induced decomposition?
journal, January 2015

  • Warneke, Jonas; Van Dorp, Willem F.; Rudolf, Petra
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 2
  • DOI: 10.1039/C4CP04239E

Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6)
journal, January 2013

  • Rosenberg, Samantha G.; Barclay, Michael; Fairbrother, D. Howard
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 11
  • DOI: 10.1039/c3cp43902j

Electron Induced Surface Reactions of Organometallic Metal(hfac) 2 Precursors and Deposit Purification
journal, May 2014

  • Rosenberg, Samantha G.; Barclay, Michael; Fairbrother, D. Howard
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 11
  • DOI: 10.1021/am501457h

Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition
journal, July 2014

  • Spencer, Julie A.; Rosenberg, Samantha G.; Barclay, Michael
  • Applied Physics A, Vol. 117, Issue 4
  • DOI: 10.1007/s00339-014-8570-5

Electron beam deposition for nanofabrication: Insights from surface science
journal, February 2011


Gas phase low energy electron induced decomposition of the focused electron beam induced deposition (FEBID) precursor trimethyl (methylcyclopentadienyl) platinum(iv) (MeCpPtMe3)
journal, January 2012

  • Engmann, Sarah; Stano, Michal; Matejčík, Štefan
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 42
  • DOI: 10.1039/c2cp42637d

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors
journal, January 2015

  • Thorman, Rachel M.; Kumar T. P., Ragesh; Fairbrother, D. Howard
  • Beilstein Journal of Nanotechnology, Vol. 6
  • DOI: 10.3762/bjnano.6.194

Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared
journal, September 2001


Fabrication and characterization of platinum nanocrystalline material grown by electron-beam induced deposition
journal, November 1995

  • Koops, H. W. P.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 13, Issue 6
  • DOI: 10.1116/1.588008

Conductive dots, wires, and supertips for field electron emitters produced by electron-beam induced deposition on samples having increased temperature
journal, November 1996

  • Koops, H. W. P.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 14, Issue 6
  • DOI: 10.1116/1.588600

Three-dimensional structurization by additive lithography, analysis of deposits using TEM and EDX, and application to field-emitter tips
journal, January 1994


Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition
journal, January 2000

  • Matsui, Shinji; Kaito, Takashi; Fujita, Jun-ichi
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 18, Issue 6
  • DOI: 10.1116/1.1319689

The 3D nanostructure growth evaluations by the real-time current monitoring on focused-ion-beam chemical vapor deposition
journal, May 2010

  • Kometani, Reo; Warisawa, Shin’ichi; Ishihara, Sunao
  • Microelectronic Engineering, Vol. 87, Issue 5-8
  • DOI: 10.1016/j.mee.2009.11.095

Characteristics of nano electron source fabricated using beam assisted process
journal, January 2004

  • Murakami, Katsuhisa; Takai, Mikio
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 22, Issue 3
  • DOI: 10.1116/1.1669652

Development of three-dimensional pattern-generating system for focused-ion-beam chemical-vapor deposition
journal, January 2003

  • Hoshino, T.; Watanabe, K.; Kometani, R.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 21, Issue 6
  • DOI: 10.1116/1.1627812

Periodic structure formation by focused electron-beam-induced deposition
journal, January 2004

  • Bret, T.; Utke, I.; Gaillard, C.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 22, Issue 5
  • DOI: 10.1116/1.1800356

Influence of the beam scan direction during focused electron beam induced deposition of 3D nanostructures
journal, March 2005


Electron range effects in focused electron beam induced deposition of 3D nanostructures
journal, April 2006


Constructing, connecting and soldering nanostructures by environmental electron beam deposition
journal, June 2004


Suspended nanostructures grown by electron beam-induced deposition of Pt and TEOS precursors
journal, October 2007


Focused-ion-beam deposition for 3-D nanostructure fabrication
journal, April 2007

  • Matsui, Shinji
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 257, Issue 1-2
  • DOI: 10.1016/j.nimb.2007.01.077

Toward Ultraflat Surface Morphologies During Focused Electron Beam Induced Nanosynthesis: Disruption Origins and Compensation
journal, January 2015

  • Winkler, Robert; Szkudlarek, Aleksandra; Fowlkes, Jason D.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 5
  • DOI: 10.1021/am508052k

New possibilities for soft matter applications: eliminating technically induced thermal stress during FIB processing
journal, January 2012

  • Schmied, Roland; Chernev, Boril; Trimmel, Gregor
  • RSC Advances, Vol. 2, Issue 17
  • DOI: 10.1039/c2ra21025h

Continuum models of focused electron beam induced processing
journal, January 2015

  • Toth, Milos; Lobo, Charlene; Friedli, Vinzenz
  • Beilstein Journal of Nanotechnology, Vol. 6
  • DOI: 10.3762/bjnano.6.157

The Nanoscale Implications of a Molecular Gas Beam during Electron Beam Induced Deposition
journal, February 2014

  • Winkler, Robert; Fowlkes, Jason; Szkudlarek, Aleksandra
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 4
  • DOI: 10.1021/am405591d

Three dimensional magnetic nanowires grown by focused electron-beam induced deposition
journal, March 2013

  • Fernández-Pacheco, Amalio; Serrano-Ramón, Luis; Michalik, Jan M.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01492

Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities
journal, January 2015

  • Gazzadi, Gian Carlo; Frabboni, Stefano
  • Beilstein Journal of Nanotechnology, Vol. 6
  • DOI: 10.3762/bjnano.6.134

Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies
journal, December 2014

  • Esposito, Marco; Tasco, Vittorianna; Cuscunà, Massimo
  • ACS Photonics, Vol. 2, Issue 1
  • DOI: 10.1021/ph500318p

High-purity 3D nano-objects grown by focused-electron-beam induced deposition
journal, July 2016


Core–Shell Plasmonic Nanohelices
journal, June 2017


The Direct Writing of Plasmonic Gold Nanostructures by Electron-Beam-Induced Deposition
journal, April 2011

  • Höflich, Katja; Yang, Ren Bin; Berger, Andreas
  • Advanced Materials, Vol. 23, Issue 22-23
  • DOI: 10.1002/adma.201004114

Focused electron beam induced deposition meets materials science
journal, January 2018


Direct-Write 3D Nanoprinting of Plasmonic Structures
journal, December 2016

  • Winkler, Robert; Schmidt, Franz-Philipp; Haselmann, Ulrich
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 9
  • DOI: 10.1021/acsami.6b13062

Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition
journal, May 2016


High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
journal, February 2018

  • Winkler, R.; Lewis, B. B.; Fowlkes, J. D.
  • ACS Applied Nano Materials, Vol. 1, Issue 3
  • DOI: 10.1021/acsanm.8b00158

Modelling focused electron beam induced deposition beyond Langmuir adsorption
journal, January 2017

  • Sanz-Hernández, Dédalo; Fernández-Pacheco, Amalio
  • Beilstein Journal of Nanotechnology, Vol. 8
  • DOI: 10.3762/bjnano.8.214

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity
journal, January 2017

  • Lewis, Brett B.; Winkler, Robert; Sang, Xiahan
  • Beilstein Journal of Nanotechnology, Vol. 8
  • DOI: 10.3762/bjnano.8.83

Noble gas ion beams in materials science for future applications and devices
journal, September 2017

  • Belianinov, Alex; Burch, Matthew J.; Kim, Songkil
  • MRS Bulletin, Vol. 42, Issue 09
  • DOI: 10.1557/mrs.2017.185

Growth and nanomechanical characterization of nanoscale 3D architectures grown via focused electron beam induced deposition
journal, January 2017

  • Lewis, Brett B.; Mound, Brittnee A.; Srijanto, Bernadeta
  • Nanoscale, Vol. 9, Issue 42
  • DOI: 10.1039/C7NR05274J

Works referencing / citing this record:

Launching a new dimension with 3D magnetic nanostructures
journal, January 2020

  • Fischer, Peter; Sanz-Hernández, Dédalo; Streubel, Robert
  • APL Materials, Vol. 8, Issue 1
  • DOI: 10.1063/1.5134474

Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition
journal, January 2018

  • Keller, Lukas; Huth, Michael
  • Beilstein Journal of Nanotechnology, Vol. 9
  • DOI: 10.3762/bjnano.9.240

Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications
journal, June 2018

  • Sanz-Hernández, Dédalo; Hamans, Ruben; Osterrieth, Johannes
  • Nanomaterials, Vol. 8, Issue 7
  • DOI: 10.3390/nano8070483

Simulation Informed CAD for 3D Nanoprinting
journal, December 2019

  • Fowlkes, Jason D.; Winkler, Robert; Mutunga, Eva
  • Micromachines, Vol. 11, Issue 1
  • DOI: 10.3390/mi11010008

3D Fabrication of Fully Iron Magnetic Microrobots
journal, March 2019


3D nanoprinting via focused electron beams
journal, June 2019

  • Winkler, R.; Fowlkes, J. D.; Rack, P. D.
  • Journal of Applied Physics, Vol. 125, Issue 21
  • DOI: 10.1063/1.5092372

Advances in artificial spin ice
journal, November 2019

  • Skjærvø, Sandra H.; Marrows, Christopher H.; Stamps, Robert L.
  • Nature Reviews Physics, Vol. 2, Issue 1
  • DOI: 10.1038/s42254-019-0118-3

Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review
journal, December 2019

  • Plank, Harald; Winkler, Robert; Schwalb, Christian H.
  • Micromachines, Vol. 11, Issue 1
  • DOI: 10.3390/mi11010048

Nature Helps: Toward Bioinspired Bactericidal Nanopatterns
journal, June 2019

  • Ganjian, Mahya; Modaresifar, Khashayar; Ligeon, Manon R. O.
  • Advanced Materials Interfaces, Vol. 6, Issue 16
  • DOI: 10.1002/admi.201900640

Non-equilibrium adatom thermal state enables rapid additive nanomanufacturing
journal, January 2019

  • Henry, Matthew R.; Kim, Songkil; Fedorov, Andrei G.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 20
  • DOI: 10.1039/c9cp01478k

3D Fabrication of Fully Iron Magnetic Microrobots
text, January 2019


Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications.
text, January 2018

  • Sanz-Hernández, Dédalo; Hamans, Ruben F.; Osterrieth, Johannes
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.27891