skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)

Abstract

Currently, there are few techniques that allow true 3D-printing on the nanoscale. The most promising candidate to fill this void is focused electron-beam-induced deposition (FEBID), a resist-free, nanofabrication compatible, direct-write method. The basic working principles of a computer-aided design (CAD) program (3BID) enabling 3D-FEBID is presented and simultaneously released for download. The 3BID capability significantly expands the currently limited toolbox for 3D-nanoprinting, providing access to geometries for optoelectronic, plasmonic, and nanomagnetic applications that were previously unattainable due to the lack of a suitable method for synthesis. In conclusion, the CAD approach supplants trial and error toward more precise/accurate FEBID required for real applications/device prototyping.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [4]; ORCiD logo [4]; ORCiD logo [3];  [3]; ORCiD logo [1]; ORCiD logo [5]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); The Univ. of Tennessee, Knoxville, TN (United States)
  2. Graz Centre for Electron Microscopy, Graz (Austria)
  3. The Univ. of Tennessee, Knoxville, TN (United States)
  4. Univ. of Cambridge, Cambridge (United Kingdom)
  5. Graz Centre for Electron Microscopy, Graz (Austria); Graz Univ. of Technology, Graz (Austria)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1439952
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Nano Materials
Additional Journal Information:
Journal Volume: 1; Journal Issue: 3; Journal ID: ISSN 2574-0970
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 3D-nanoprinting; additive manufacturing; computer-aided design; direct write; focused electron beam induced deposition

Citation Formats

Fowlkes, Jason D., Winkler, Robert, Lewis, Brett B., Fernandez-Pacheco, Amalio, Skoric, Luka, Sanz-Hernandez, Dodalo, Stanford, Michael G., Mutunga, Eva M., Rack, Philip D., and Plank, Harald. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID). United States: N. p., 2018. Web. https://doi.org/10.1021/acsanm.7b00342.
Fowlkes, Jason D., Winkler, Robert, Lewis, Brett B., Fernandez-Pacheco, Amalio, Skoric, Luka, Sanz-Hernandez, Dodalo, Stanford, Michael G., Mutunga, Eva M., Rack, Philip D., & Plank, Harald. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID). United States. https://doi.org/10.1021/acsanm.7b00342
Fowlkes, Jason D., Winkler, Robert, Lewis, Brett B., Fernandez-Pacheco, Amalio, Skoric, Luka, Sanz-Hernandez, Dodalo, Stanford, Michael G., Mutunga, Eva M., Rack, Philip D., and Plank, Harald. Wed . "High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)". United States. https://doi.org/10.1021/acsanm.7b00342. https://www.osti.gov/servlets/purl/1439952.
@article{osti_1439952,
title = {High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)},
author = {Fowlkes, Jason D. and Winkler, Robert and Lewis, Brett B. and Fernandez-Pacheco, Amalio and Skoric, Luka and Sanz-Hernandez, Dodalo and Stanford, Michael G. and Mutunga, Eva M. and Rack, Philip D. and Plank, Harald},
abstractNote = {Currently, there are few techniques that allow true 3D-printing on the nanoscale. The most promising candidate to fill this void is focused electron-beam-induced deposition (FEBID), a resist-free, nanofabrication compatible, direct-write method. The basic working principles of a computer-aided design (CAD) program (3BID) enabling 3D-FEBID is presented and simultaneously released for download. The 3BID capability significantly expands the currently limited toolbox for 3D-nanoprinting, providing access to geometries for optoelectronic, plasmonic, and nanomagnetic applications that were previously unattainable due to the lack of a suitable method for synthesis. In conclusion, the CAD approach supplants trial and error toward more precise/accurate FEBID required for real applications/device prototyping.},
doi = {10.1021/acsanm.7b00342},
journal = {ACS Applied Nano Materials},
number = 3,
volume = 1,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Multidimensional materials and device architectures for future hybrid energy storage
journal, September 2016

  • Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12647

Microsupercapacitors as miniaturized energy-storage components for on-chip electronics
journal, November 2016

  • Kyeremateng, Nana Amponsah; Brousse, Thierry; Pech, David
  • Nature Nanotechnology, Vol. 12, Issue 1
  • DOI: 10.1038/nnano.2016.196

Three-dimensional nanomagnetism
journal, June 2017

  • Fernández-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15756

Additive nanomanufacturing – A review
journal, August 2014

  • Engstrom, D. S.; Porter, B.; Pacios, M.
  • Journal of Materials Research, Vol. 29, Issue 17
  • DOI: 10.1557/jmr.2014.159

Gas-assisted focused electron beam and ion beam processing and fabrication
journal, January 2008

  • Utke, Ivo; Hoffmann, Patrik; Melngailis, John
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 26, Issue 4
  • DOI: 10.1116/1.2955728

Pure Platinum Nanostructures Grown by Electron Beam Induced Deposition
journal, September 2013

  • Elbadawi, Chris; Toth, Milos; Lobo, Charlene J.
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 19
  • DOI: 10.1021/am403167d

Gold Complexes for Focused-Electron-Beam-Induced Deposition
journal, September 2014

  • van Dorp, W. F.; Wu, X.; Mulders, J. J. L.
  • Langmuir, Vol. 30, Issue 40
  • DOI: 10.1021/la502618t

Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6)
journal, January 2013

  • Rosenberg, Samantha G.; Barclay, Michael; Fairbrother, D. Howard
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 11
  • DOI: 10.1039/c3cp43902j

Electron Induced Surface Reactions of Organometallic Metal(hfac) 2 Precursors and Deposit Purification
journal, May 2014

  • Rosenberg, Samantha G.; Barclay, Michael; Fairbrother, D. Howard
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 11
  • DOI: 10.1021/am501457h

Characteristics of nano electron source fabricated using beam assisted process
journal, January 2004

  • Murakami, Katsuhisa; Takai, Mikio
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 22, Issue 3
  • DOI: 10.1116/1.1669652

Development of three-dimensional pattern-generating system for focused-ion-beam chemical-vapor deposition
journal, January 2003

  • Hoshino, T.; Watanabe, K.; Kometani, R.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 21, Issue 6
  • DOI: 10.1116/1.1627812

High-purity 3D nano-objects grown by focused-electron-beam induced deposition
journal, July 2016


    Works referencing / citing this record:

    Launching a new dimension with 3D magnetic nanostructures
    journal, January 2020

    • Fischer, Peter; Sanz-Hernández, Dédalo; Streubel, Robert
    • APL Materials, Vol. 8, Issue 1
    • DOI: 10.1063/1.5134474

    Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition
    journal, January 2018

    • Keller, Lukas; Huth, Michael
    • Beilstein Journal of Nanotechnology, Vol. 9
    • DOI: 10.3762/bjnano.9.240

    Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications
    journal, June 2018

    • Sanz-Hernández, Dédalo; Hamans, Ruben; Osterrieth, Johannes
    • Nanomaterials, Vol. 8, Issue 7
    • DOI: 10.3390/nano8070483

    Simulation Informed CAD for 3D Nanoprinting
    journal, December 2019

    • Fowlkes, Jason D.; Winkler, Robert; Mutunga, Eva
    • Micromachines, Vol. 11, Issue 1
    • DOI: 10.3390/mi11010008

    3D Fabrication of Fully Iron Magnetic Microrobots
    journal, March 2019


    3D nanoprinting via focused electron beams
    journal, June 2019

    • Winkler, R.; Fowlkes, J. D.; Rack, P. D.
    • Journal of Applied Physics, Vol. 125, Issue 21
    • DOI: 10.1063/1.5092372

    Advances in artificial spin ice
    journal, November 2019

    • Skjærvø, Sandra H.; Marrows, Christopher H.; Stamps, Robert L.
    • Nature Reviews Physics, Vol. 2, Issue 1
    • DOI: 10.1038/s42254-019-0118-3

    Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review
    journal, December 2019

    • Plank, Harald; Winkler, Robert; Schwalb, Christian H.
    • Micromachines, Vol. 11, Issue 1
    • DOI: 10.3390/mi11010048

    Nature Helps: Toward Bioinspired Bactericidal Nanopatterns
    journal, June 2019

    • Ganjian, Mahya; Modaresifar, Khashayar; Ligeon, Manon R. O.
    • Advanced Materials Interfaces, Vol. 6, Issue 16
    • DOI: 10.1002/admi.201900640

    Non-equilibrium adatom thermal state enables rapid additive nanomanufacturing
    journal, January 2019

    • Henry, Matthew R.; Kim, Songkil; Fedorov, Andrei G.
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 20
    • DOI: 10.1039/c9cp01478k