skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interfacial phonon scattering and transmission loss in > 1 µm thick silicon-on-insulator thin films

Abstract

Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. Here, to better understand the interfacial scattering of phonons and to test the validity of Ziman's theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1–10 μm and a temperature range of 100–300 K. The Si/SiO 2 interface roughness was determined to be 0.11±0.04nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which ismore » not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. Finally, we derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.« less

Authors:
 [1]; ORCiD logo [2];  [1];  [1]
  1. National University of Singapore (Singapore). Department of Mechanical Engineering
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1439937
Alternate Identifier(s):
OSTI ID: 1437515
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 19; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Jiang, Puqing, Lindsay, Lucas R., Huang, Xi, and Koh, Yee Kan. Interfacial phonon scattering and transmission loss in >1 µm thick silicon-on-insulator thin films. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.97.195308.
Jiang, Puqing, Lindsay, Lucas R., Huang, Xi, & Koh, Yee Kan. Interfacial phonon scattering and transmission loss in >1 µm thick silicon-on-insulator thin films. United States. doi:10.1103/PhysRevB.97.195308.
Jiang, Puqing, Lindsay, Lucas R., Huang, Xi, and Koh, Yee Kan. Thu . "Interfacial phonon scattering and transmission loss in >1 µm thick silicon-on-insulator thin films". United States. doi:10.1103/PhysRevB.97.195308. https://www.osti.gov/servlets/purl/1439937.
@article{osti_1439937,
title = {Interfacial phonon scattering and transmission loss in >1 µm thick silicon-on-insulator thin films},
author = {Jiang, Puqing and Lindsay, Lucas R. and Huang, Xi and Koh, Yee Kan},
abstractNote = {Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. Here, to better understand the interfacial scattering of phonons and to test the validity of Ziman's theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1–10 μm and a temperature range of 100–300 K. The Si/SiO2 interface roughness was determined to be 0.11±0.04nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. Finally, we derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.},
doi = {10.1103/PhysRevB.97.195308},
journal = {Physical Review B},
number = 19,
volume = 97,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces
journal, May 2017


Measurement of the Elastic Constants of Silicon Single Crystals and Their Thermal Coefficients
journal, September 1951


Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

The mean free path of electrons in metals
journal, January 1952


Ab initio thermal transport in compound semiconductors
journal, April 2013


Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
journal, August 2011


Isotope scattering of dispersive phonons in Ge
journal, January 1983


Two-Dimensional Phonon Transport in Supported Graphene
journal, April 2010


Role of low-energy phonons with mean-free-paths >0.8 μm in heat conduction in silicon
journal, June 2016

  • Jiang, Puqing; Lindsay, Lucas; Koh, Yee Kan
  • Journal of Applied Physics, Vol. 119, Issue 24
  • DOI: 10.1063/1.4954674

Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
journal, February 1998

  • Asheghi, M.; Touzelbaev, M. N.; Goodson, K. E.
  • Journal of Heat Transfer, Vol. 120, Issue 1
  • DOI: 10.1115/1.2830059

Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
journal, July 2010

  • Vineis, Christopher J.; Shakouri, Ali; Majumdar, Arun
  • Advanced Materials, Vol. 22, Issue 36, p. 3970-3980
  • DOI: 10.1002/adma.201000839

Phonon-boundary scattering in thin silicon layers
journal, September 1997

  • Asheghi, M.; Leung, Y. K.; Wong, S. S.
  • Applied Physics Letters, Vol. 71, Issue 13
  • DOI: 10.1063/1.119402

Thermal conduction in doped single-crystal silicon films
journal, April 2002

  • Asheghi, M.; Kurabayashi, K.; Kasnavi, R.
  • Journal of Applied Physics, Vol. 91, Issue 8
  • DOI: 10.1063/1.1458057

Thermal conductivity of doped polysilicon layers
journal, January 2001

  • McConnell, A. D.; Uma, S.; Goodson, K. E.
  • Journal of Microelectromechanical Systems, Vol. 10, Issue 3
  • DOI: 10.1109/84.946782

The conductivity of thin metallic films according to the electron theory of metals
journal, January 1938


Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge
journal, February 2010


Probing phonon–surface interaction by wave-packet simulation: Effect of roughness and morphology
journal, October 2017

  • Shao, Cheng; Rong, Qingyuan; Hu, Ming
  • Journal of Applied Physics, Vol. 122, Issue 15
  • DOI: 10.1063/1.5008367

Phonon Reflection Imaging: A Determination of Specular versus Diffuse Boundary Scattering
journal, June 1984


Nonlocal theory for heat transport at high frequencies
journal, November 2014


Microscopic Origin of the Reduced Thermal Conductivity of Silicon Nanowires
journal, May 2012


Frontiers of silicon-on-insulator
journal, May 2003

  • Celler, G. K.; Cristoloveanu, Sorin
  • Journal of Applied Physics, Vol. 93, Issue 9
  • DOI: 10.1063/1.1558223

Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers
journal, June 2005

  • Liu, Wenjun; Asheghi, Mehdi
  • Journal of Heat Transfer, Vol. 128, Issue 1
  • DOI: 10.1115/1.2130403

Analysis of heat flow in layered structures for time-domain thermoreflectance
journal, December 2004

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 75, Issue 12
  • DOI: 10.1063/1.1819431

Radial quasiballistic transport in time-domain thermoreflectance studied using Monte Carlo simulations
journal, April 2014

  • Ding, D.; Chen, X.; Minnich, A. J.
  • Applied Physics Letters, Vol. 104, Issue 14
  • DOI: 10.1063/1.4870811

Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR)
journal, July 2016

  • Jiang, Puqing; Huang, Bin; Koh, Yee Kan
  • Review of Scientific Instruments, Vol. 87, Issue 7
  • DOI: 10.1063/1.4954969

Nanostructured Thermoelectrics: The New Paradigm?
journal, February 2010

  • Kanatzidis, Mercouri G.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902195j

Specular Scattering Probability of Acoustic Phonons in Atomically Flat Interfaces
journal, December 2009


Note on the conduction of heat in crystals
journal, June 1938


Thermal Challenges in Next-Generation Electronic Systems
journal, December 2008

  • Garimella, Suresh V.; Fleischer, Amy S.; Murthy, Jayathi Y.
  • IEEE Transactions on Components and Packaging Technologies, Vol. 31, Issue 4
  • DOI: 10.1109/TCAPT.2008.2001197

Thermoelectric properties of silicon nanostructures
journal, October 2010


Emerging challenges and materials for thermal management of electronics
journal, May 2014


Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach
journal, July 2017

  • Jiang, Puqing; Qian, Xin; Yang, Ronggui
  • Review of Scientific Instruments, Vol. 88, Issue 7
  • DOI: 10.1063/1.4991715

Elastic properties of a-SiO 2 up to 2300 K from Brillouin scattering measurements
journal, February 2002


Mesoscopic Size Effects on the Thermal Conductance of Silicon Nanowire
journal, May 2009

  • Heron, J. S.; Fournier, T.; Mingo, N.
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl803844j

Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes
journal, July 2010


Frequency dependence of the thermal conductivity of semiconductor alloys
journal, August 2007


Thermal conductivity of individual silicon nanowires
journal, October 2003

  • Li, Deyu; Wu, Yiying; Kim, Philip
  • Applied Physics Letters, Vol. 83, Issue 14, p. 2934-2936
  • DOI: 10.1063/1.1616981

Phonon–boundary scattering in ultrathin single-crystal silicon layers
journal, May 2004

  • Liu, W.; Asheghi, M.
  • Applied Physics Letters, Vol. 84, Issue 19
  • DOI: 10.1063/1.1741039

Intrinsic parameter fluctuations in nanometre scale thin-body SOI devices introduced by interface roughness
journal, September 2003

  • Brown, Andrew R.; Adamu-Lema, Fikru; Asenov, Asen
  • Superlattices and Microstructures, Vol. 34, Issue 3-6
  • DOI: 10.1016/j.spmi.2004.03.026

Interpreting picosecond acoustics in the case of low interface stiffness
journal, November 2012

  • Hohensee, Gregory T.; Hsieh, Wen-Pin; Losego, Mark D.
  • Review of Scientific Instruments, Vol. 83, Issue 11
  • DOI: 10.1063/1.4766957

Direct Measurements of Surface Scattering in Si Nanosheets Using a Microscale Phonon Spectrometer: Implications for Casimir-Limit Predicted by Ziman Theory
journal, January 2014

  • Hertzberg, Jared B.; Aksit, Mahmut; Otelaja, Obafemi O.
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl402701a

Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes
journal, June 2015


Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments
journal, October 2014

  • Wilson, R. B.; Cahill, David G.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6075

    Works referencing / citing this record:

    Highly anisotropic thermoelectric properties of black phosphorus crystals
    journal, July 2019


    Highly anisotropic thermoelectric properties of black phosphorus crystals
    journal, July 2019