DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries

Abstract

A silicon-graphite blended anode is paired with a high capacity LiFePO4 reference/counter electrode to track irreversibility and lithium inventory. The LiFePO4 electrode provides a reliable, flat potential for dQ dV-1 analysis of LixSi and LixC electrochemical reactions. We can relate this electrochemistry to the morphological and physical changes taking place.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States). Chemical Sciences and Engineering Division
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1439867
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 54; Journal Issue: 29; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Dose, W. M., Piernas-Munoz, M. J., Maroni, V. A., Trask, S. E., Bloom, I., and Johnson, C. S. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries. United States: N. p., 2018. Web. doi:10.1039/c8cc00456k.
Dose, W. M., Piernas-Munoz, M. J., Maroni, V. A., Trask, S. E., Bloom, I., & Johnson, C. S. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries. United States. https://doi.org/10.1039/c8cc00456k
Dose, W. M., Piernas-Munoz, M. J., Maroni, V. A., Trask, S. E., Bloom, I., and Johnson, C. S. Fri . "Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries". United States. https://doi.org/10.1039/c8cc00456k. https://www.osti.gov/servlets/purl/1439867.
@article{osti_1439867,
title = {Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries},
author = {Dose, W. M. and Piernas-Munoz, M. J. and Maroni, V. A. and Trask, S. E. and Bloom, I. and Johnson, C. S.},
abstractNote = {A silicon-graphite blended anode is paired with a high capacity LiFePO4 reference/counter electrode to track irreversibility and lithium inventory. The LiFePO4 electrode provides a reliable, flat potential for dQ dV-1 analysis of LixSi and LixC electrochemical reactions. We can relate this electrochemistry to the morphological and physical changes taking place.},
doi = {10.1039/c8cc00456k},
journal = {ChemComm},
number = 29,
volume = 54,
place = {United States},
year = {Fri Feb 09 00:00:00 EST 2018},
month = {Fri Feb 09 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Figures / Tables:

Fig.1 . Fig.1 .: Representative electrochemical profile versus capacity with cycle number of (a) high capacity LiFePO4 cycled against Li metal at C/10, (b) 15% Si graphite cycled against Li metal at C/10, (c) 15% Si graphite cycled against a LiFePO4 reference electrode at C/10, and (d) 15% Si graphite lithiation capacitymore » retention and efficiency for the cell shown in (c). In (c ) the slippage is shown with respect to cycle number and shows that after 100 cycles at C/10 the LFP electrode has surplus Li inventory.« less

Save / Share:

Works referenced in this record:

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
journal, June 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b02882

RETRACTED ARTICLE: Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries
journal, June 2016

  • Dash, Ranjan; Pannala, Sreekanth
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep27449

Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms
journal, January 2011

  • Key, Baris; Morcrette, Mathieu; Tarascon, Jean-Marie
  • Journal of the American Chemical Society, Vol. 133, Issue 3
  • DOI: 10.1021/ja108085d

Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries
journal, January 2017

  • Wetjen, Morten; Pritzl, Daniel; Jung, Roland
  • Journal of The Electrochemical Society, Vol. 164, Issue 12
  • DOI: 10.1149/2.1921712jes

An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si
journal, January 2007

  • Li, Jing; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2409862

Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
journal, January 2007


A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries
journal, January 2012

  • Xin, Xing; Zhou, Xufeng; Wang, Feng
  • Journal of Materials Chemistry, Vol. 22, Issue 16
  • DOI: 10.1039/c2jm00120a

Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model
journal, January 2014

  • Radvanyi, Etienne; Porcher, Willy; De Vito, Eric
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 32
  • DOI: 10.1039/C4CP02324B

Colossal Reversible Volume Changes in Lithium Alloys
journal, January 2001

  • Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 9
  • DOI: 10.1149/1.1388178

Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?
journal, September 1997


Stabilization of Silicon Anode for Li-Ion Batteries
journal, January 2010

  • Xiao, Jie; Xu, Wu; Wang, Deyu
  • Journal of The Electrochemical Society, Vol. 157, Issue 10, p. A1047-A1051
  • DOI: 10.1149/1.3464767

Layered Oxide, Graphite and Silicon-Graphite Electrodes for Lithium-Ion Cells: Effect of Electrolyte Composition and Cycling Windows
journal, October 2016

  • Klett, Matilda; Gilbert, James A.; Pupek, Krzysztof Z.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0131701jes

Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries
journal, January 2011

  • Oumellal, Y.; Delpuech, N.; Mazouzi, D.
  • Journal of Materials Chemistry, Vol. 21, Issue 17
  • DOI: 10.1039/c1jm10213c

Reliable reference electrodes for lithium-ion batteries
journal, June 2013


Nano-network electronic conduction in iron and nickel olivine phosphates
journal, February 2004

  • Herle, P. Subramanya; Ellis, B.; Coombs, N.
  • Nature Materials, Vol. 3, Issue 3
  • DOI: 10.1038/nmat1063

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
text, January 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.688

Works referencing / citing this record:

Graphdiyne applied for electrochemical energy storage
journal, January 2019

  • He, Jianjiang; Li, Xiaodong; Lu, Tiantian
  • Dalton Transactions, Vol. 48, Issue 39
  • DOI: 10.1039/c9dt02862e

Assessment of Li-Inventory in Cycled Si-Graphite Anodes Using LiFePO 4 as a Diagnostic Cathode
journal, January 2018

  • Dose, Wesley M.; Maroni, Victor A.; Piernas-Muñoz, Maria Jose
  • Journal of The Electrochemical Society, Vol. 165, Issue 10
  • DOI: 10.1149/2.1271810jes

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.