skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Silver-Containing α-MnO2 Nanorods: Electrochemistry in Na-Based Battery Systems

Abstract

Manganese oxides are considered attractive cathode materials for rechargeable batteries due to the high abundance and environmental friendliness of manganese. In particular, cryptomelane and hollandite are desirable due to their ability to host cations within their octahedral molecular sieve (OMS-2) Alpha-MnO2 structure. In this work, we investigate silver containing Alpha-MnO2 structured materials (AgxMn8O16, x = 1.22, L-Ag-OMS-2 or 1.66, H-Ag-OMS-2) as host materials for Li ion and Na ion insertion/de-insertion. The results indicate a significant difference in the lithiation versus sodiation process the OMS-2 materials. Initial reduction of Ag1.22Mn8O16 to 1.0 V delivered ~370 mAh/g. Cycling of Ag1.22Mn8O16 between voltage ranges of 3.8 - 1.7 V and 3.8 - 1.3 V in a Na battery delivered initial capacities of 113 and 247 mAh/g, respectively. In contrast, Ag1.66Mn8O16 delivered only 15 mAh/g, ~0.5 electron equivalents, to 1.7 and 1.3 volts. Study of the system by electrochemical impedance spectroscopy (EIS) showed a significant decrease in charge transfer resistance from 2029 Omega to 594 Omega after 1.5 electron equivalents per Ag1.22Mn8O16 formula unit of Na ion insertion. In contrast, both Ag1.22Mn8O16 and Ag1.66Mn8O16 exhibited gradual impedance increases during lithiation. The formation of silver metal could be detected only in the sodiated material bymore » X-ray diffraction (XRD). Thus, the impedance of Ag-OMS-2 decreases upon sodiation coincident with the formation of silver metal during the discharge process, consistent with the more favorable formation of silver metal during the sodiation process relative to the lithation process.« less

Authors:
 [1];  [2];  [2];  [2];  [2];  [1];  [1];  [3]
  1. Stony Brook Univ., NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1439851
Report Number(s):
BNL-113936-2017-JAAM
Journal ID: ISSN 1944-8244
Grant/Contract Number:  
SC0012704; SC0012673
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 9; Journal Issue: 5; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Huang, Jianping, Poyraz, Altug S., Lee, Seung-Yong, Wu, Lijun, Zhu, Yimei, Marschilok, Amy C., Takeuchi, Kenneth J., and Takeuchi, Esther S.. Silver-Containing α-MnO2 Nanorods: Electrochemistry in Na-Based Battery Systems. United States: N. p., 2016. Web. https://doi.org/10.1021/acsami.6b08549.
Huang, Jianping, Poyraz, Altug S., Lee, Seung-Yong, Wu, Lijun, Zhu, Yimei, Marschilok, Amy C., Takeuchi, Kenneth J., & Takeuchi, Esther S.. Silver-Containing α-MnO2 Nanorods: Electrochemistry in Na-Based Battery Systems. United States. https://doi.org/10.1021/acsami.6b08549
Huang, Jianping, Poyraz, Altug S., Lee, Seung-Yong, Wu, Lijun, Zhu, Yimei, Marschilok, Amy C., Takeuchi, Kenneth J., and Takeuchi, Esther S.. Thu . "Silver-Containing α-MnO2 Nanorods: Electrochemistry in Na-Based Battery Systems". United States. https://doi.org/10.1021/acsami.6b08549. https://www.osti.gov/servlets/purl/1439851.
@article{osti_1439851,
title = {Silver-Containing α-MnO2 Nanorods: Electrochemistry in Na-Based Battery Systems},
author = {Huang, Jianping and Poyraz, Altug S. and Lee, Seung-Yong and Wu, Lijun and Zhu, Yimei and Marschilok, Amy C. and Takeuchi, Kenneth J. and Takeuchi, Esther S.},
abstractNote = {Manganese oxides are considered attractive cathode materials for rechargeable batteries due to the high abundance and environmental friendliness of manganese. In particular, cryptomelane and hollandite are desirable due to their ability to host cations within their octahedral molecular sieve (OMS-2) Alpha-MnO2 structure. In this work, we investigate silver containing Alpha-MnO2 structured materials (AgxMn8O16, x = 1.22, L-Ag-OMS-2 or 1.66, H-Ag-OMS-2) as host materials for Li ion and Na ion insertion/de-insertion. The results indicate a significant difference in the lithiation versus sodiation process the OMS-2 materials. Initial reduction of Ag1.22Mn8O16 to 1.0 V delivered ~370 mAh/g. Cycling of Ag1.22Mn8O16 between voltage ranges of 3.8 - 1.7 V and 3.8 - 1.3 V in a Na battery delivered initial capacities of 113 and 247 mAh/g, respectively. In contrast, Ag1.66Mn8O16 delivered only 15 mAh/g, ~0.5 electron equivalents, to 1.7 and 1.3 volts. Study of the system by electrochemical impedance spectroscopy (EIS) showed a significant decrease in charge transfer resistance from 2029 Omega to 594 Omega after 1.5 electron equivalents per Ag1.22Mn8O16 formula unit of Na ion insertion. In contrast, both Ag1.22Mn8O16 and Ag1.66Mn8O16 exhibited gradual impedance increases during lithiation. The formation of silver metal could be detected only in the sodiated material by X-ray diffraction (XRD). Thus, the impedance of Ag-OMS-2 decreases upon sodiation coincident with the formation of silver metal during the discharge process, consistent with the more favorable formation of silver metal during the sodiation process relative to the lithation process.},
doi = {10.1021/acsami.6b08549},
journal = {ACS Applied Materials and Interfaces},
number = 5,
volume = 9,
place = {United States},
year = {2016},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Evolution of Strategies for Modern Rechargeable Batteries
journal, June 2012

  • Goodenough, John B.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar2002705

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid
journal, June 2012

  • Liu, Jun; Zhang, Ji-Guang; Yang, Zhenguo
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200690

Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries
journal, January 2012

  • Thackeray, Michael M.; Wolverton, Christopher; Isaacs, Eric D.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21892e

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Cathode materials for magnesium and magnesium-ion based batteries
journal, March 2015

  • Huie, Matthew M.; Bock, David C.; Takeuchi, Esther S.
  • Coordination Chemistry Reviews, Vol. 287
  • DOI: 10.1016/j.ccr.2014.11.005

Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes
journal, January 2013

  • Li, Fujun; Zhang, Tao; Zhou, Haoshen
  • Energy & Environmental Science, Vol. 6, Issue 4
  • DOI: 10.1039/c3ee00053b

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Electrochemical intercalation and deintercalation of NaxMnO2 bronzes
journal, May 1985


Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells
journal, February 2002

  • Caballero, A.; Hernán, L.; Morales, J.
  • Journal of Materials Chemistry, Vol. 12, Issue 4
  • DOI: 10.1039/b108830k

Electrochemical and Thermal Properties of α-NaFeO 2 Cathode for Na-Ion Batteries
journal, January 2013

  • Zhao, Jie; Zhao, Liwei; Dimov, Nikolay
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.007305jes

Electrochemical investigation of the P2–NaxCoO2 phase diagram
journal, December 2010

  • Berthelot, R.; Carlier, D.; Delmas, C.
  • Nature Materials, Vol. 10, Issue 1
  • DOI: 10.1038/nmat2920

NaCrO 2 cathode for high-rate sodium-ion batteries
journal, January 2015

  • Yu, Chan-Yeop; Park, Jae-Sang; Jung, Hun-Gi
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE00695C

P2-NaxVO2 system as electrodes for batteries and electron-correlated materials
journal, November 2012

  • Guignard, Marie; Didier, Christophe; Darriet, Jacques
  • Nature Materials, Vol. 12, Issue 1
  • DOI: 10.1038/nmat3478

P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

Study of the Insertion/Deinsertion Mechanism of Sodium into Na 0.44 MnO 2
journal, April 2007

  • Sauvage, F.; Laffont, L.; Tarascon, J. -M.
  • Inorganic Chemistry, Vol. 46, Issue 8
  • DOI: 10.1021/ic0700250

Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na 0.44 MnO 2 for Sodium-Ion Battery
journal, March 2012

  • Kim, Heejin; Kim, Dong Jun; Seo, Dong-Hwa
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm300065y

Facile Synthesis of Nanorod-like Single Crystalline Na 0.44 MnO 2 for High Performance Sodium-Ion Batteries
journal, January 2015

  • Zhan, Pan; Wang, Shuai; Yuan, Yan
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0891506jes

Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries
journal, January 2013

  • Su, Dawei; Ahn, Hyo-Jun; Wang, Guoxiu
  • Journal of Materials Chemistry A, Vol. 1, Issue 15
  • DOI: 10.1039/c3ta00031a

β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries
journal, November 2013

  • Su, Dawei; Ahn, Hyo-Jun; Wang, Guoxiu
  • NPG Asia Materials, Vol. 5, Issue 11
  • DOI: 10.1038/am.2013.56

Electrochemistry of Hollandite α-MnO 2 : Li-Ion and Na-Ion Insertion and Li 2 O Incorporation
journal, June 2013

  • Tompsett, David A.; Islam, M. Saiful
  • Chemistry of Materials, Vol. 25, Issue 12
  • DOI: 10.1021/cm400864n

Synthesis and Electrochemistry of Silver Hollandite
journal, January 2010

  • Zhu, Shali; Marschilok, Amy C.; Lee, Chia-Ying
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 8
  • DOI: 10.1149/1.3428747

Synthetic Control of Composition and Crystallite Size of Silver Hollandite, Ag x Mn 8 O 16 : Impact on Electrochemistry
journal, September 2012

  • Takeuchi, Kenneth J.; Yau, Shali Z.; Menard, Melissa C.
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 10
  • DOI: 10.1021/am301443g

The Electrochemistry of Silver Hollandite Nanorods, Ag x Mn 8 O 16 : Enhancement of Electrochemical Battery Performance via Dimensional and Compositional Control
journal, January 2013

  • Takeuchi, Kenneth J.; Yau, Shali Z.; Subramanian, Aditya
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.014305jes

Structural Defects of Silver Hollandite, Ag x Mn 8 O y , Nanorods: Dramatic Impact on Electrochemistry
journal, July 2015


In situ high-energy synchrotron X-ray diffraction studies and first principles modeling of α-MnO 2 electrodes in Li–O 2 and Li-ion coin cells
journal, January 2015

  • Yang, Zhenzhen; Trahey, Lynn; Ren, Yang
  • Journal of Materials Chemistry A, Vol. 3, Issue 14
  • DOI: 10.1039/C4TA06633B

The structure of K 1.33 Mn 8 O 16 and cation ordering in hollandite-type structures
journal, April 1986

  • Vicat, J.; Fanchon, E.; Strobel, P.
  • Acta Crystallographica Section B Structural Science, Vol. 42, Issue 2
  • DOI: 10.1107/S0108768186098415

The Reduction of Silver Vanadium Oxide in Lithium/Silver Vanadium Oxide Cells
journal, January 1988

  • Takeuchi, Esther Sans; Thiebolt III, William C.
  • Journal of The Electrochemical Society, Vol. 135, Issue 11, p. 2691-2694
  • DOI: 10.1149/1.2095412

Solid-State Characterization of Reduced Silver Vanadium Oxide from the Li/SVO Discharge Reaction
journal, December 1994

  • Leising, Randolph A.; Thiebolt, William C.; Takeuchi, Esther Sans
  • Inorganic Chemistry, Vol. 33, Issue 25
  • DOI: 10.1021/ic00103a021

Electrochemical Reduction of Silver Vanadium Phosphorus Oxide, Ag 2 VO 2 PO 4 : The Formation of Electrically Conductive Metallic Silver Nanoparticles
journal, October 2009

  • Takeuchi, Esther S.; Marschilok, Amy C.; Tanzil, Kevin
  • Chemistry of Materials, Vol. 21, Issue 20
  • DOI: 10.1021/cm902102k

Energy dispersive X-ray diffraction of lithium–silver vanadium phosphorous oxide cells: in situ cathode depth profiling of an electrochemical reduction–displacement reaction
journal, January 2013

  • Takeuchi, Esther S.; Marschilok, Amy C.; Takeuchi, Kenneth J.
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee40152a

Electrochemical reduction of silver vanadium phosphorous oxide, Ag2VO2PO4: Silver metal deposition and associated increase in electrical conductivity
journal, October 2010


Microwave-Assisted Synthesis of Silver Vanadium Phosphorus Oxide, Ag 2 VO 2 PO 4 : Crystallite Size Control and Impact on Electrochemistry
journal, March 2016


Electrochemical Reduction of Ag 0.48 VOPO 4 : A Mechanistic Study Employing X-Ray Absorption Spectroscopy and X-Ray Powder Diffraction
journal, January 2015

  • Kirshenbaum, Kevin C.; Menard, Melissa C.; Kim, Young Jin
  • Journal of The Electrochemical Society, Vol. 162, Issue 8
  • DOI: 10.1149/2.0621508jes

In situ visualization of Li/Ag2VP2O8 batteries revealing rate-dependent discharge mechanism
journal, January 2015


Electrochemical reduction of Ag 2 VP 2 O 8 composite electrodes visualized via in situ energy dispersive X-ray diffraction (EDXRD): unexpected conductive additive effects
journal, January 2015

  • Kirshenbaum, Kevin C.; Bock, David C.; Zhong, Zhong
  • Journal of Materials Chemistry A, Vol. 3, Issue 35
  • DOI: 10.1039/C5TA04523A

Oxygen Functionalization of Multiwall Carbon Nanotubes by Microwave-Excited Surface-Wave Plasma Treatment
journal, April 2009

  • Chen, Changlun; Liang, Bo; Ogino, Akihisa
  • The Journal of Physical Chemistry C, Vol. 113, Issue 18
  • DOI: 10.1021/jp9012015

Synthesis and characterization of microporous carbon nitride
journal, April 2008


Microstructural Features of α-MnO[sub 2] Electrodes for Lithium Batteries
journal, January 1998

  • Shao-Horn, Y.
  • Journal of The Electrochemical Society, Vol. 145, Issue 2
  • DOI: 10.1149/1.1838307

Effects of Cu 2+ Ions on the Structure and Reactivity of Todorokite- and Cryptomelane-Type Manganese Oxide Octahedral Molecular Sieves
journal, July 1999

  • Nicolas-Tolentino, Elaine; Tian, Zheng-Rong; Zhou, Hua
  • Chemistry of Materials, Vol. 11, Issue 7
  • DOI: 10.1021/cm9811040

Microwave-Assisted Hydrothermal Synthesis of Cryptomelane-Type Octahedral Molecular Sieves (OMS-2) and Their Catalytic Studies
journal, June 2010

  • Huang, Hui; Sithambaram, Shanthakumar; Chen, Chun-Hu
  • Chemistry of Materials, Vol. 22, Issue 12
  • DOI: 10.1021/cm100220g

Synthetic Routes to Microporous Manganese Oxides
journal, October 1997


Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies
journal, June 2015

  • Xu, Yang; Zhou, Min; Wang, Xin
  • Angewandte Chemie International Edition, Vol. 54, Issue 30
  • DOI: 10.1002/anie.201503477

Mesoporous Manganese Oxide Nanowires for High-Capacity, High-Rate, Hybrid Electrical Energy Storage
journal, September 2011

  • Yan, Wenbo; Ayvazian, Talin; Kim, Jungyun
  • ACS Nano, Vol. 5, Issue 10
  • DOI: 10.1021/nn2029583

Highly Ordered MnO 2 Nanopillars for Enhanced Supercapacitor Performance
journal, May 2013


Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials
journal, April 2008

  • Suib, Steven L.
  • Accounts of Chemical Research, Vol. 41, Issue 4
  • DOI: 10.1021/ar7001667

Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials
journal, January 2008

  • Suib, Steven L.
  • Journal of Materials Chemistry, Vol. 18, Issue 14
  • DOI: 10.1039/b714966m

Asynchronous Crystal Cell Expansion during Lithiation of K + -Stabilized α-MnO 2
journal, April 2015

  • Yuan, Yifei; Nie, Anmin; Odegard, Gregory M.
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl5048913

    Works referencing / citing this record:

    Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods
    journal, May 2017

    • Xu, Feng; Wu, Lijun; Meng, Qingping
    • Nature Communications, Vol. 8, Issue 1
    • DOI: 10.1038/ncomms15400

    Charge localization and ordering in A 2 Mn 8 O 16 hollandite group oxides: Impact of density functional theory approaches
    journal, December 2017


    Capacity Retention for (De)lithiation of Silver Containing α-MnO 2 : Impact of Structural Distortion and Transition Metal Dissolution
    journal, January 2018

    • Huang, Jianping; Housel, Lisa M.; Quilty, Calvin D.
    • Journal of The Electrochemical Society, Vol. 165, Issue 11
    • DOI: 10.1149/2.0371811jes

    Review of the Stability/Capacity Trade-off in Silver Hollandite Lithium Battery Cathodes
    journal, January 2018

    • Smith, Paul F.; Lutz, Diana M.; Takeuchi, Esther S.
    • MRS Advances, Vol. 3, Issue 14
    • DOI: 10.1557/adv.2018.306

    Brittle fracture to recoverable plasticity: polytypism-dependent nanomechanics in todorokite-like nanobelts
    journal, January 2019

    • Amin Shikder, Md Ruhul; Maksud, Mahjabin; Vasudevamurthy, Gokul
    • Nanoscale Advances, Vol. 1, Issue 1
    • DOI: 10.1039/c8na00079d

    Compositional control of radionuclide retention in hollandite‐based ceramic waste forms for Cs‐immobilization
    journal, December 2018

    • Zhao, Mingyang; Xu, Yun; Shuller‐Nickles, Lindsay
    • Journal of the American Ceramic Society, Vol. 102, Issue 7
    • DOI: 10.1111/jace.16258

    Silver-Containing α-MnO 2  Nanorods: Electrochemistry in Rechargeable Aqueous Zn-MnO 2 Batteries
    journal, January 2019

    • Wang, Lei; Wu, Qiyuan; Abraham, Alyson
    • Journal of The Electrochemical Society, Vol. 166, Issue 15
    • DOI: 10.1149/2.0101915jes

    Synthesis and Characterization of 2 × 4 Tunnel Structured Manganese Dioxides as Cathodes in Rechargeable Li, Na, and Mg Batteries
    journal, January 2019

    • Poyraz, Altug S.; Quilty, Calvin D.; Housel, Lisa M.
    • Journal of The Electrochemical Society, Vol. 166, Issue 4
    • DOI: 10.1149/2.1341902jes

    Brittle fracture to recoverable plasticity: Polytypism-dependent nanomechanics in todorokite-like nanobelts
    text, January 2021

    • Shikder, MR Amin; Maksud, M.; Vasudevamurthy, G.
    • University of Illinois at Chicago
    • DOI: 10.25417/uic.14910282