skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels

Abstract

A lignocellulose to bisabolene bioconversion process is demonstrated to be fully compatible with [Ch][Lys].

Authors:
 [1];  [2];  [1];  [1];  [3];  [4];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [4]; ORCiD logo [3];  [1];  [5]; ORCiD logo [4]
  1. Lawrence Berkeley National Laboratory, Berkeley, USA
  2. Pacific Northwest National Laboratory, Richland, USA, Joint BioEnergy Institute, Emeryville
  3. Lawrence Berkeley National Laboratory, Berkeley, USA, Joint BioEnergy Institute, Emeryville
  4. Joint BioEnergy Institute, Emeryville, USA, Sandia National Laboratory, Livermore
  5. Pacific Northwest National Laboratory, Richland, USA
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1439778
Alternate Identifier(s):
OSTI ID: 1458771; OSTI ID: 1506283
Grant/Contract Number:  
AC02-05CH11231; AC05-76RL01830
Resource Type:
Published Article
Journal Name:
Green Chemistry
Additional Journal Information:
Journal Name: Green Chemistry Journal Volume: 20 Journal Issue: 12; Journal ID: ISSN 1463-9262
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Sundstrom, Eric, Yaegashi, Junko, Yan, Jipeng, Masson, Fabrice, Papa, Gabriella, Rodriguez, Alberto, Mirsiaghi, Mona, Liang, Ling, He, Qian, Tanjore, Deepti, Pray, Todd R., Singh, Seema, Simmons, Blake, Sun, Ning, Magnuson, Jon, and Gladden, John. Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels. United Kingdom: N. p., 2018. Web. doi:10.1039/C8GC00518D.
Sundstrom, Eric, Yaegashi, Junko, Yan, Jipeng, Masson, Fabrice, Papa, Gabriella, Rodriguez, Alberto, Mirsiaghi, Mona, Liang, Ling, He, Qian, Tanjore, Deepti, Pray, Todd R., Singh, Seema, Simmons, Blake, Sun, Ning, Magnuson, Jon, & Gladden, John. Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels. United Kingdom. doi:10.1039/C8GC00518D.
Sundstrom, Eric, Yaegashi, Junko, Yan, Jipeng, Masson, Fabrice, Papa, Gabriella, Rodriguez, Alberto, Mirsiaghi, Mona, Liang, Ling, He, Qian, Tanjore, Deepti, Pray, Todd R., Singh, Seema, Simmons, Blake, Sun, Ning, Magnuson, Jon, and Gladden, John. Mon . "Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels". United Kingdom. doi:10.1039/C8GC00518D.
@article{osti_1439778,
title = {Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels},
author = {Sundstrom, Eric and Yaegashi, Junko and Yan, Jipeng and Masson, Fabrice and Papa, Gabriella and Rodriguez, Alberto and Mirsiaghi, Mona and Liang, Ling and He, Qian and Tanjore, Deepti and Pray, Todd R. and Singh, Seema and Simmons, Blake and Sun, Ning and Magnuson, Jon and Gladden, John},
abstractNote = {A lignocellulose to bisabolene bioconversion process is demonstrated to be fully compatible with [Ch][Lys].},
doi = {10.1039/C8GC00518D},
journal = {Green Chemistry},
number = 12,
volume = 20,
place = {United Kingdom},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1039/C8GC00518D

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Three process configurations for conversion of IL pretreated biomass to advanced biofuels: fully separated unit operations (red), one pot deconstruction–saccharification (blue), and the fully consolidated process (green). The fully consolidated process eliminates the requirement for IL separation prior to saccharification and fermentation, but requires IL tolerant enzyme cocktailsmore » and an IL tolerant host organism. Separation of both fuel molecules and residual ionic liquids can then be consolidated into a single step following fermentation.« less

Save / Share:

Works referenced in this record:

The generation of fermentation inhibitors during dilute acid hydrolysis of softwood
journal, February 1999

  • Larsson, Simona; Palmqvist, Eva; Hahn-Hägerdal, Bärbel
  • Enzyme and Microbial Technology, Vol. 24, Issue 3-4
  • DOI: 10.1016/S0141-0229(98)00101-X

Biodiesel production from oleaginous microorganisms
journal, January 2009


Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass
journal, January 2012

  • Liu, Qiu-Ping; Hou, Xue-Dan; Li, Ning
  • Green Chem., Vol. 14, Issue 2
  • DOI: 10.1039/C2GC16128A

A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels
journal, May 2012


Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol
journal, January 2016

  • Xu, Feng; Sun, Jian; Konda, N. V. S. N. Murthy
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE02940F

Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts
journal, October 2017


Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment
journal, June 2011

  • Klein-Marcuschamer, Daniel; Simmons, Blake A.; Blanch, Harvey W.
  • Biofuels, Bioproducts and Biorefining, Vol. 5, Issue 5
  • DOI: 10.1002/bbb.303

Lipid production in batch and fed-batch cultures of Rhodosporidium toruloidesfrom 5 and 6 carbon carbohydrates
journal, May 2012

  • Wiebe, Marilyn G.; Koivuranta, Kari; Penttilä, Merja
  • BMC Biotechnology, Vol. 12, Issue 1
  • DOI: 10.1186/1472-6750-12-26

Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production
journal, January 2013


l(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans
journal, August 2010

  • Ou, Mark S.; Ingram, Lonnie O.; Shanmugam, K. T.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 38, Issue 5
  • DOI: 10.1007/s10295-010-0796-4

Effect of organic acids on the growth and fermentation of ethanologenicEscherichia coli LY01
journal, January 1999


Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina
journal, July 2016


Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides
journal, February 2014


Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass
journal, January 2016

  • Frederix, Marijke; Mingardon, Florence; Hu, Matthew
  • Green Chemistry, Vol. 18, Issue 15
  • DOI: 10.1039/C6GC00642F

Identification and microbial production of a terpene-based advanced biofuel
journal, September 2011

  • Peralta-Yahya, Pamela P.; Ouellet, Mario; Chan, Rossana
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1494

Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification
journal, July 2010


Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation
journal, March 2013


Engineering Rhodosporidium toruloides for increased lipid production : Engineering
journal, November 2015

  • Zhang, Shuyan; Skerker, Jeffrey M.; Rutter, Charles D.
  • Biotechnology and Bioengineering, Vol. 113, Issue 5
  • DOI: 10.1002/bit.25864

Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step
journal, January 2006

  • Dadi, Anantharam P.; Varanasi, Sasidhar; Schall, Constance A.
  • Biotechnology and Bioengineering, Vol. 95, Issue 5, p. 904-910
  • DOI: 10.1002/bit.21047

Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production
journal, January 2014

  • Konda, Nvsn; Shi, Jian; Singh, Seema
  • Biotechnology for Biofuels, Vol. 7, Issue 1
  • DOI: 10.1186/1754-6834-7-86

Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation
journal, January 2014

  • Sun, Ning; Parthasarathi, Ramakrishnan; Socha, Aaron M.
  • Green Chem., Vol. 16, Issue 5
  • DOI: 10.1039/C3GC42401D

Fatty alcohols production by oleaginous yeast
journal, August 2015

  • Fillet, Sandy; Gibert, Jordi; Suárez, Beatriz
  • Journal of Industrial Microbiology & Biotechnology, Vol. 42, Issue 11
  • DOI: 10.1007/s10295-015-1674-x

Engineering Terpene Biosynthesis in Streptomyces for Production of the Advanced Biofuel Precursor Bisabolene
journal, July 2014

  • Phelan, Ryan M.; Sekurova, Olga N.; Keasling, Jay D.
  • ACS Synthetic Biology, Vol. 4, Issue 4
  • DOI: 10.1021/sb5002517

Recovery of an ionic liquid [BMIM]Cl from a hydrolysate of lignocellulosic biomass using electrodialysis
journal, December 2013


Molecular weight distributions of polysaccharides and lignin extracted from plant biomass with a polar ionic liquid analysed without a derivatisation process
journal, January 2015

  • Kuroda, Kosuke; Fukaya, Yukinobu; Yamada, Tatsuhiko
  • Analytical Methods, Vol. 7, Issue 5
  • DOI: 10.1039/C4AY02493A

One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids
journal, January 2017

  • Sun, Jian; Konda, N. V. S. N. Murthy; Parthasarathi, Ramakrishnan
  • Green Chemistry, Vol. 19, Issue 13
  • DOI: 10.1039/C7GC01179B

Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
journal, August 2000


One-pot ionic liquid pretreatment and saccharification of switchgrass
journal, January 2013

  • Shi, Jian; Gladden, John M.; Sathitsuksanoh, Noppadon
  • Green Chemistry, Vol. 15, Issue 9
  • DOI: 10.1039/c3gc40545a

High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture
journal, August 2007


The influence of lactic acid formation on the simultaneous saccharification and fermentation (SSF) of softwood to ethanol
journal, January 2000


Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium
journal, February 2007


Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation
journal, June 2017

  • Sun, Jian; Shi, Jian; Murthy Konda, N. V. S. N.
  • Biotechnology for Biofuels, Vol. 10, Issue 1
  • DOI: 10.1186/s13068-017-0842-9

Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks
journal, February 2015


Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle
journal, December 2010

  • Shill, Kierston; Padmanabhan, Sasisanker; Xin, Qin
  • Biotechnology and Bioengineering, Vol. 108, Issue 3, p. 511-520
  • DOI: 10.1002/bit.23014

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.