skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-learning Monte Carlo with deep neural networks

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1439375
Grant/Contract Number:  
SC0010526
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Name: Physical Review B Journal Volume: 97 Journal Issue: 20; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Shen, Huitao, Liu, Junwei, and Fu, Liang. Self-learning Monte Carlo with deep neural networks. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.97.205140.
Shen, Huitao, Liu, Junwei, & Fu, Liang. Self-learning Monte Carlo with deep neural networks. United States. doi:10.1103/PhysRevB.97.205140.
Shen, Huitao, Liu, Junwei, and Fu, Liang. Tue . "Self-learning Monte Carlo with deep neural networks". United States. doi:10.1103/PhysRevB.97.205140.
@article{osti_1439375,
title = {Self-learning Monte Carlo with deep neural networks},
author = {Shen, Huitao and Liu, Junwei and Fu, Liang},
abstractNote = {},
doi = {10.1103/PhysRevB.97.205140},
journal = {Physical Review B},
number = 20,
volume = 97,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevB.97.205140

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum Entanglement in Neural Network States
journal, May 2017


Monte Carlo Method for Magnetic Impurities in Metals
journal, June 1986


Machine learning for many-body physics: The case of the Anderson impurity model
journal, October 2014

  • Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole
  • Physical Review B, Vol. 90, Issue 15
  • DOI: 10.1103/PhysRevB.90.155136

Self-learning Monte Carlo method
journal, January 2017


Equivalence of restricted Boltzmann machines and tensor network states
journal, February 2018


Accelerated Monte Carlo simulations with restricted Boltzmann machines
journal, January 2017


Self-learning Monte Carlo method: Continuous-time algorithm
journal, October 2017


Machine Learning Topological Invariants with Neural Networks
journal, February 2018


Unifying neural-network quantum states and correlator product states via tensor networks
journal, February 2018


Efficient representation of quantum many-body states with deep neural networks
journal, September 2017


Approximation capabilities of multilayer feedforward networks
journal, January 1991


Localized Magnetic States in Metals
journal, October 1961


Scaling Theory of the Asymmetric Anderson Model
journal, February 1978


Numerical study of the two-dimensional Hubbard model
journal, July 1989


Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice
journal, January 2018

  • Saito, Hiroki; Kato, Masaya
  • Journal of the Physical Society of Japan, Vol. 87, Issue 1
  • DOI: 10.7566/JPSJ.87.014001

Learning disordered topological phases by statistical recovery of symmetry
journal, May 2018


Monte Carlo study of the symmetric Anderson-impurity model
journal, July 1988


Continuous-time Monte Carlo methods for quantum impurity models
journal, May 2011

  • Gull, Emanuel; Millis, Andrew J.; Lichtenstein, Alexander I.
  • Reviews of Modern Physics, Vol. 83, Issue 2
  • DOI: 10.1103/RevModPhys.83.349

Quantum Monte Carlo with directed loops
journal, October 2002


Approximation by superpositions of a sigmoidal function
journal, December 1989

  • Cybenko, G.
  • Mathematics of Control, Signals, and Systems, Vol. 2, Issue 4
  • DOI: 10.1007/BF02551274

Neural-Network Quantum States, String-Bond States, and Chiral Topological States
journal, January 2018


Probing many-body localization with neural networks
journal, June 2017


Restricted Boltzmann machine learning for solving strongly correlated quantum systems
journal, November 2017


Self-learning quantum Monte Carlo method in interacting fermion systems
journal, July 2017


Machine learning of frustrated classical spin models. I. Principal component analysis
journal, October 2017


Recommender engine for continuous-time quantum Monte Carlo methods
journal, March 2017


Discovering phase transitions with unsupervised learning
journal, November 2016


Deep learning and the Schrödinger equation
journal, October 2017


Performance analysis of continuous-time solvers for quantum impurity models
journal, December 2007


Identifying product order with restricted Boltzmann machines
journal, March 2018


Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
journal, January 1996

  • Georges, Antoine; Kotliar, Gabriel; Krauth, Werner
  • Reviews of Modern Physics, Vol. 68, Issue 1
  • DOI: 10.1103/RevModPhys.68.13

Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems
journal, December 2016

  • Ohtsuki, Tomoki; Ohtsuki, Tomi
  • Journal of the Physical Society of Japan, Vol. 85, Issue 12
  • DOI: 10.7566/JPSJ.85.123706

Two-dimensional Hubbard model: Numerical simulation study
journal, April 1985


Monte Carlo calculations of coupled boson-fermion systems. I
journal, October 1981


Computational Methods in Coupled Electron-Ion Monte Carlo Simulations
journal, September 2005


Identifying quantum phase transitions with adversarial neural networks
journal, April 2018


Self-learning Monte Carlo method and cumulative update in fermion systems
journal, June 2017


Quantum Loop Topography for Machine Learning
journal, May 2017


Detection of Phase Transition via Convolutional Neural Networks
journal, June 2017

  • Tanaka, Akinori; Tomiya, Akio
  • Journal of the Physical Society of Japan, Vol. 86, Issue 6
  • DOI: 10.7566/JPSJ.86.063001

Reptation quantum Monte Carlo algorithm for lattice Hamiltonians with a directed-update scheme
journal, October 2010


Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination
journal, June 2017


Directed update for the stochastic Green function algorithm
journal, November 2008


Learning phase transitions by confusion
journal, February 2017

  • van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4037

Solving the quantum many-body problem with artificial neural networks
journal, February 2017


Machine learning phases of matter
journal, February 2017

  • Carrasquilla, Juan; Melko, Roger G.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4035

Neural-network quantum state tomography
journal, February 2018