skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-learning Monte Carlo with deep neural networks

; ;
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:  
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Name: Physical Review B Journal Volume: 97 Journal Issue: 20; Journal ID: ISSN 2469-9950
American Physical Society
Country of Publication:
United States

Citation Formats

Shen, Huitao, Liu, Junwei, and Fu, Liang. Self-learning Monte Carlo with deep neural networks. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.97.205140.
Shen, Huitao, Liu, Junwei, & Fu, Liang. Self-learning Monte Carlo with deep neural networks. United States. doi:
Shen, Huitao, Liu, Junwei, and Fu, Liang. Tue . "Self-learning Monte Carlo with deep neural networks". United States. doi:
title = {Self-learning Monte Carlo with deep neural networks},
author = {Shen, Huitao and Liu, Junwei and Fu, Liang},
abstractNote = {},
doi = {10.1103/PhysRevB.97.205140},
journal = {Physical Review B},
number = 20,
volume = 97,
place = {United States},
year = {2018},
month = {5}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum Entanglement in Neural Network States
journal, May 2017

Monte Carlo Method for Magnetic Impurities in Metals
journal, June 1986

Machine learning for many-body physics: The case of the Anderson impurity model
journal, October 2014

  • Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole
  • Physical Review B, Vol. 90, Issue 15
  • DOI: 10.1103/PhysRevB.90.155136

Self-learning Monte Carlo method
journal, January 2017

Equivalence of restricted Boltzmann machines and tensor network states
journal, February 2018

Accelerated Monte Carlo simulations with restricted Boltzmann machines
journal, January 2017

Self-learning Monte Carlo method: Continuous-time algorithm
journal, October 2017

Machine Learning Topological Invariants with Neural Networks
journal, February 2018

Unifying neural-network quantum states and correlator product states via tensor networks
journal, February 2018

Efficient representation of quantum many-body states with deep neural networks
journal, September 2017

Approximation capabilities of multilayer feedforward networks
journal, January 1991

Localized Magnetic States in Metals
journal, October 1961

Scaling Theory of the Asymmetric Anderson Model
journal, February 1978

Numerical study of the two-dimensional Hubbard model
journal, July 1989

Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice
journal, January 2018

  • Saito, Hiroki; Kato, Masaya
  • Journal of the Physical Society of Japan, Vol. 87, Issue 1
  • DOI: 10.7566/JPSJ.87.014001

Learning disordered topological phases by statistical recovery of symmetry
journal, May 2018

Monte Carlo study of the symmetric Anderson-impurity model
journal, July 1988

Continuous-time Monte Carlo methods for quantum impurity models
journal, May 2011

  • Gull, Emanuel; Millis, Andrew J.; Lichtenstein, Alexander I.
  • Reviews of Modern Physics, Vol. 83, Issue 2
  • DOI: 10.1103/RevModPhys.83.349

Quantum Monte Carlo with directed loops
journal, October 2002

Approximation by superpositions of a sigmoidal function
journal, December 1989

  • Cybenko, G.
  • Mathematics of Control, Signals, and Systems, Vol. 2, Issue 4
  • DOI: 10.1007/BF02551274

Neural-Network Quantum States, String-Bond States, and Chiral Topological States
journal, January 2018

Probing many-body localization with neural networks
journal, June 2017

Restricted Boltzmann machine learning for solving strongly correlated quantum systems
journal, November 2017

Self-learning quantum Monte Carlo method in interacting fermion systems
journal, July 2017

Machine learning of frustrated classical spin models. I. Principal component analysis
journal, October 2017

Recommender engine for continuous-time quantum Monte Carlo methods
journal, March 2017

Discovering phase transitions with unsupervised learning
journal, November 2016

Deep learning and the Schrödinger equation
journal, October 2017

Performance analysis of continuous-time solvers for quantum impurity models
journal, December 2007

Identifying product order with restricted Boltzmann machines
journal, March 2018

Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
journal, January 1996

  • Georges, Antoine; Kotliar, Gabriel; Krauth, Werner
  • Reviews of Modern Physics, Vol. 68, Issue 1
  • DOI: 10.1103/RevModPhys.68.13

Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems
journal, December 2016

  • Ohtsuki, Tomoki; Ohtsuki, Tomi
  • Journal of the Physical Society of Japan, Vol. 85, Issue 12
  • DOI: 10.7566/JPSJ.85.123706

Two-dimensional Hubbard model: Numerical simulation study
journal, April 1985

Monte Carlo calculations of coupled boson-fermion systems. I
journal, October 1981

Computational Methods in Coupled Electron-Ion Monte Carlo Simulations
journal, September 2005

Identifying quantum phase transitions with adversarial neural networks
journal, April 2018

Self-learning Monte Carlo method and cumulative update in fermion systems
journal, June 2017

Quantum Loop Topography for Machine Learning
journal, May 2017

Detection of Phase Transition via Convolutional Neural Networks
journal, June 2017

  • Tanaka, Akinori; Tomiya, Akio
  • Journal of the Physical Society of Japan, Vol. 86, Issue 6
  • DOI: 10.7566/JPSJ.86.063001

Reptation quantum Monte Carlo algorithm for lattice Hamiltonians with a directed-update scheme
journal, October 2010

Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination
journal, June 2017

Directed update for the stochastic Green function algorithm
journal, November 2008

Learning phase transitions by confusion
journal, February 2017

  • van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4037

Solving the quantum many-body problem with artificial neural networks
journal, February 2017

Machine learning phases of matter
journal, February 2017

  • Carrasquilla, Juan; Melko, Roger G.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4035

Neural-network quantum state tomography
journal, February 2018