skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cloud Quantum Computing of an Atomic Nucleus

Abstract

Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Univ. of Tennessee, Knoxville, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
OSTI Identifier:
1439152
Alternate Identifier(s):
OSTI ID: 1438505; OSTI ID: 1593554
Grant/Contract Number:  
AC05-00OR22725; FG02-96ER40963; SC0018223; ERKBP57; ERKBP72; ERKJ332; ERKJ335
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 21; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Citation Formats

Dumitrescu, Eugene F., McCaskey, Alex J., Hagen, Gaute, Jansen, Gustav R., Morris, Titus D., Papenbrock, Thomas F., Pooser, Raphael C., Dean, David Jarvis, and Lougovski, Pavel. Cloud Quantum Computing of an Atomic Nucleus. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.120.210501.
Dumitrescu, Eugene F., McCaskey, Alex J., Hagen, Gaute, Jansen, Gustav R., Morris, Titus D., Papenbrock, Thomas F., Pooser, Raphael C., Dean, David Jarvis, & Lougovski, Pavel. Cloud Quantum Computing of an Atomic Nucleus. United States. doi:10.1103/PhysRevLett.120.210501.
Dumitrescu, Eugene F., McCaskey, Alex J., Hagen, Gaute, Jansen, Gustav R., Morris, Titus D., Papenbrock, Thomas F., Pooser, Raphael C., Dean, David Jarvis, and Lougovski, Pavel. Wed . "Cloud Quantum Computing of an Atomic Nucleus". United States. doi:10.1103/PhysRevLett.120.210501. https://www.osti.gov/servlets/purl/1439152.
@article{osti_1439152,
title = {Cloud Quantum Computing of an Atomic Nucleus},
author = {Dumitrescu, Eugene F. and McCaskey, Alex J. and Hagen, Gaute and Jansen, Gustav R. and Morris, Titus D. and Papenbrock, Thomas F. and Pooser, Raphael C. and Dean, David Jarvis and Lougovski, Pavel},
abstractNote = {Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.},
doi = {10.1103/PhysRevLett.120.210501},
journal = {Physical Review Letters},
number = 21,
volume = 120,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Figures / Tables:

TABLE I TABLE I: Ground-state energies of the deuteron (in MeV) from nite-basis calculations (EN) and extrapolations to in- nite basis size at a given order of the extrapolation formula (6). The upper part shows results from exact diagonalizations in Hilbert spaces with N single-particle states, and the lower part the resultsmore » from quantum computing on N qubits. We have E1 = 0:436 MeV. The fit at O(e–4kL) requires three parameters and is only possible for N = 3. The deuteron ground-state energy is –2:22 MeV.« less

Save / Share:

Works referenced in this record:

Simulated Quantum Computation of Molecular Energies
journal, September 2005


A new expansion for nucleon-nucleon interactions
journal, April 1998


Volume dependence of the energy spectrum in massive quantum field theories: I. Stable particle states
journal, June 1986

  • Lüscher, M.
  • Communications in Mathematical Physics, Vol. 104, Issue 2
  • DOI: 10.1007/BF01211589

Ab initio no core shell model
journal, March 2013

  • Barrett, Bruce R.; Navrátil, Petr; Vary, James P.
  • Progress in Particle and Nuclear Physics, Vol. 69
  • DOI: 10.1016/j.ppnp.2012.10.003

The limits of the nuclear landscape
journal, June 2012

  • Erler, Jochen; Birge, Noah; Kortelainen, Markus
  • Nature, Vol. 486, Issue 7404
  • DOI: 10.1038/nature11188

Computational Complexity and Fundamental Limitations to Fermionic Quantum Monte Carlo Simulations
journal, May 2005


Effective field theory of nuclear forces
journal, January 1999


Systematic expansion for infrared oscillator basis extrapolations
journal, April 2014


Low-Depth Quantum Simulation of Materials
journal, March 2018


The theory of variational hybrid quantum-classical algorithms
journal, February 2016


A variational eigenvalue solver on a photonic quantum processor
journal, July 2014

  • Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5213

Universal properties of infrared oscillator basis extrapolations
journal, April 2013


Lattice simulations for few- and many-body systems
journal, July 2009


Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure
journal, February 2017


Efficient Variational Quantum Simulator Incorporating Active Error Minimization
journal, June 2017


Shell model Monte Carlo methods
journal, January 1997


Recent developments in no-core shell-model calculations
journal, May 2009

  • Navrátil, Petr; Quaglioni, Sofia; Stetcu, Ionel
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 36, Issue 8
  • DOI: 10.1088/0954-3899/36/8/083101

Matplotlib: A 2D Graphics Environment
journal, January 2007


E FFECTIVE F IELD T HEORY FOR F EW -N UCLEON S YSTEMS
journal, December 2002


Coupled-cluster computations of atomic nuclei
journal, September 2014


Towards quantum chemistry on a quantum computer
journal, January 2010

  • Lanyon, B. P.; Whitfield, J. D.; Gillett, G. G.
  • Nature Chemistry, Vol. 2, Issue 2
  • DOI: 10.1038/nchem.483

Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
journal, September 2017

  • Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan
  • Nature, Vol. 549, Issue 7671
  • DOI: 10.1038/nature23879

Coupled-cluster theory in quantum chemistry
journal, February 2007


The shell model as a unified view of nuclear structure
journal, June 2005


Ultraviolet extrapolations in finite oscillator bases
journal, December 2014


Effective field theory in the harmonic oscillator basis
journal, April 2016


Quantum Monte Carlo methods for nuclear physics
journal, September 2015


Scalable Quantum Simulation of Molecular Energies
journal, July 2016

  • O’Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.
  • Physical Review X, Vol. 6, Issue 3
  • DOI: 10.1103/PhysRevX.6.031007

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.