DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improving on aquaporins

Abstract

Biological nanopores can selectively and rapidly transport ions and molecules through membranes. For example, many biological ion channels conduct only one type of ion across the cell membrane, and they do so in response to external stimuli. Aquaporins transport water at astonishingly high rates and are efficient desalination units, in that they have excellent rejection of all ions, including protons. In conclusion, on page 792 of this issue, Tunuguntla et al. present an artificial nanopore system that sustains water fluxes exceeding those of aquaporins, exhibits ionic selectivities comparable to those of biological ion channels, and consists of carbon nanotubes (CNTs) that are 10 nm long and merely 0.8 nm in diameter embedded in a lipid bilayer.

Authors:
 [1];  [2]
  1. Univ. of California, Irvine, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1438767
Report Number(s):
LLNL-JRNL-735736
Journal ID: ISSN 0036-8075
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Science
Additional Journal Information:
Journal Volume: 357; Journal Issue: 6353; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Siwy, Zuzanna, and Fornasiero, Francesco. Improving on aquaporins. United States: N. p., 2017. Web. doi:10.1126/science.aao2440.
Siwy, Zuzanna, & Fornasiero, Francesco. Improving on aquaporins. United States. https://doi.org/10.1126/science.aao2440
Siwy, Zuzanna, and Fornasiero, Francesco. Fri . "Improving on aquaporins". United States. https://doi.org/10.1126/science.aao2440. https://www.osti.gov/servlets/purl/1438767.
@article{osti_1438767,
title = {Improving on aquaporins},
author = {Siwy, Zuzanna and Fornasiero, Francesco},
abstractNote = {Biological nanopores can selectively and rapidly transport ions and molecules through membranes. For example, many biological ion channels conduct only one type of ion across the cell membrane, and they do so in response to external stimuli. Aquaporins transport water at astonishingly high rates and are efficient desalination units, in that they have excellent rejection of all ions, including protons. In conclusion, on page 792 of this issue, Tunuguntla et al. present an artificial nanopore system that sustains water fluxes exceeding those of aquaporins, exhibits ionic selectivities comparable to those of biological ion channels, and consists of carbon nanotubes (CNTs) that are 10 nm long and merely 0.8 nm in diameter embedded in a lipid bilayer.},
doi = {10.1126/science.aao2440},
journal = {Science},
number = 6353,
volume = 357,
place = {United States},
year = {Fri Aug 25 00:00:00 EDT 2017},
month = {Fri Aug 25 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes
journal, October 2014

  • Geng, Jia; Kim, Kyunghoon; Zhang, Jianfei
  • Nature, Vol. 514, Issue 7524
  • DOI: 10.1038/nature13817

Structural determinants of water permeation through aquaporin-1
journal, October 2000

  • Murata, Kazuyoshi; Mitsuoka, Kaoru; Hirai, Teruhisa
  • Nature, Vol. 407, Issue 6804
  • DOI: 10.1038/35036519

Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes
journal, May 2006


Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins
journal, August 2017

  • Tunuguntla, Ramya H.; Henley, Robert Y.; Yao, Yun-Chiao
  • Science, Vol. 357, Issue 6353
  • DOI: 10.1126/science.aan2438

Aquaporin Water Channels (Nobel Lecture)
journal, August 2004


Aligned Multiwalled Carbon Nanotube Membranes
journal, January 2004


Ion exclusion by sub-2-nm carbon nanotube pores
journal, June 2008

  • Fornasiero, F.; Park, H. G.; Holt, J. K.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 45
  • DOI: 10.1073/pnas.0710437105

Desalination by biomimetic aquaporin membranes: Review of status and prospects
journal, January 2013


Materials for next-generation desalination and water purification membranes
journal, April 2016

  • Werber, Jay R.; Osuji, Chinedum O.; Elimelech, Menachem
  • Nature Reviews Materials, Vol. 1, Issue 5
  • DOI: 10.1038/natrevmats.2016.18

Nanofluidic Transport through Isolated Carbon Nanotube Channels: Advances, Controversies, and Challenges
journal, June 2015

  • Guo, Shirui; Meshot, Eric R.; Kuykendall, Tevye
  • Advanced Materials, Vol. 27, Issue 38
  • DOI: 10.1002/adma.201500372

Works referencing / citing this record:

Dynamic Curvature Nanochannel‐Based Membrane with Anomalous Ionic Transport Behaviors and Reversible Rectification Switch
journal, January 2019


Membrane Transport of Nonelectrolyte Solutions in Concentration Polarization Conditions: H r Form of the Kedem–Katchalsky–Peusner Equations
journal, April 2019

  • Batko, Kornelia M.; Ślęzak, Andrzej
  • International Journal of Chemical Engineering, Vol. 2019
  • DOI: 10.1155/2019/5629259

Correlated interfacial water transport and proton conductivity in perfluorosulfonic acid membranes
journal, April 2019

  • Ling, Xiao; Bonn, Mischa; Domke, Katrin F.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 18
  • DOI: 10.1073/pnas.1817470116

Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores
journal, February 2018


Permselectivity limits of biomimetic desalination membranes
journal, June 2018