DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recent Direct Reaction Experimental Studies with Radioactive Tin Beams

Abstract

Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, N = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn-106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.

Authors:
 [1];  [2];  [3];  [1];  [4];  [5];  [6];  [6];  [1];  [7];  [1];  [1];  [8];  [9];  [6];  [3];  [10];  [7];  [9];  [11] more »;  [3];  [9];  [12];  [6];  [13];  [14];  [15];  [16];  [17];  [14];  [18];  [14];  [19];  [14];  [20];  [14];  [14];  [20];  [21];  [14];  [20];  [22];  [20] « less
  1. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy
  2. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Physics Division
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Physics Division; Univ. of Notre Dame, IN (United States). Dept. of Physics
  5. Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy; Rutgers Univ., New Brunswick, NJ (United States). Dept. of Physics and Astronomy
  6. Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy
  7. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Physics Division
  8. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Physics Division; Sungkyunkwan University, Suwon (Korea). Dept. of Physics
  9. Rutgers Univ., New Brunswick, NJ (United States). Dept. of Physics and Astronomy
  10. Instituut voor Kernen Stralingsfysica, KU Leuven (Belgium)
  11. Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics
  12. Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy; International Atomic Energy Agency, Division of Physical and Chemical Sciences, Vienna (Austria)
  13. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; TRIUMF, Vancouver, BC (Canada)
  14. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  15. Rutgers Univ., New Brunswick, NJ (United States); Univ. of Notre Dame, IN (United States)
  16. Univ. of Tennessee, Knoxville, TN (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  17. Univ. Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico). Inst. de Ciencias Nucleares
  18. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Louisiana State Univ., Baton Rouge, LA (United States)
  19. Michigan State Univ., East Lansing, MI (United States); Rutgers Univ., New Brunswick, NJ (United States)
  20. Michigan State Univ., East Lansing, MI (United States)
  21. Univ. of Surrey, Guildford (United Kingdom)
  22. Michigan State Univ., East Lansing, MI (United States); Central Michigan Univ., Mount Pleasant, MI (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Holifield Radioactive Ion Beam Facility (HRIBF)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP)
OSTI Identifier:
1438757
Alternate Identifier(s):
OSTI ID: 1261430
Report Number(s):
LLNL-JRNL-736511
Journal ID: ISSN 0587-4254
Grant/Contract Number:  
AC52-07NA27344; FG02-96ER40983; SC0001174; FG02-96ER40955; AC05-00OR22725; FG02-96ER40978; FG52-08NA28552; NA0002132; FG52- 08NA28552; PHY-1067806; PHY-1102511; PHY- 0722822; ST/J000051/1
Resource Type:
Accepted Manuscript
Journal Name:
Acta Physica Polonica. Series B
Additional Journal Information:
Journal Volume: 46; Journal Issue: 3; Journal ID: ISSN 0587-4254
Publisher:
Jagiellonian University
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS

Citation Formats

Jones, K. L., Ahn, S., Allmond, J. M., Ayres, A., Bardayan, D. W., Baugher, T., Bazin, D., Berryman, J. S., Bey, A., Bingham, C., Cartegni, L., Cerizza, G., Chae, K. Y., Cizewski, J. A., Gade, A., Galindo-Uribarri, A., Garcia-Ruiz, R. F., Grzywacz, R., Howard, M. E., Kozub, R. L., Liang, J. F., Manning, B., Mato?, M., McDaniel, S., Miller, D., Nesaraja, C. D., O'Malley, P. D., Padgett, S., Padilla-Rodal, E., Pain, S. D., Pittman, S. T., Radford, D. C., Ratkiewicz, A., Schmitt, K. T., Shore, A., Smith, M. S., Stracener, D. W., Stroberg, S. R., Tostevin, J., Varner, R. L., Weisshaar, D., Wimmer, K., and Winkler, R. Recent Direct Reaction Experimental Studies with Radioactive Tin Beams. United States: N. p., 2015. Web. doi:10.5506/APhysPolB.46.537.
Jones, K. L., Ahn, S., Allmond, J. M., Ayres, A., Bardayan, D. W., Baugher, T., Bazin, D., Berryman, J. S., Bey, A., Bingham, C., Cartegni, L., Cerizza, G., Chae, K. Y., Cizewski, J. A., Gade, A., Galindo-Uribarri, A., Garcia-Ruiz, R. F., Grzywacz, R., Howard, M. E., Kozub, R. L., Liang, J. F., Manning, B., Mato?, M., McDaniel, S., Miller, D., Nesaraja, C. D., O'Malley, P. D., Padgett, S., Padilla-Rodal, E., Pain, S. D., Pittman, S. T., Radford, D. C., Ratkiewicz, A., Schmitt, K. T., Shore, A., Smith, M. S., Stracener, D. W., Stroberg, S. R., Tostevin, J., Varner, R. L., Weisshaar, D., Wimmer, K., & Winkler, R. Recent Direct Reaction Experimental Studies with Radioactive Tin Beams. United States. https://doi.org/10.5506/APhysPolB.46.537
Jones, K. L., Ahn, S., Allmond, J. M., Ayres, A., Bardayan, D. W., Baugher, T., Bazin, D., Berryman, J. S., Bey, A., Bingham, C., Cartegni, L., Cerizza, G., Chae, K. Y., Cizewski, J. A., Gade, A., Galindo-Uribarri, A., Garcia-Ruiz, R. F., Grzywacz, R., Howard, M. E., Kozub, R. L., Liang, J. F., Manning, B., Mato?, M., McDaniel, S., Miller, D., Nesaraja, C. D., O'Malley, P. D., Padgett, S., Padilla-Rodal, E., Pain, S. D., Pittman, S. T., Radford, D. C., Ratkiewicz, A., Schmitt, K. T., Shore, A., Smith, M. S., Stracener, D. W., Stroberg, S. R., Tostevin, J., Varner, R. L., Weisshaar, D., Wimmer, K., and Winkler, R. Sun . "Recent Direct Reaction Experimental Studies with Radioactive Tin Beams". United States. https://doi.org/10.5506/APhysPolB.46.537. https://www.osti.gov/servlets/purl/1438757.
@article{osti_1438757,
title = {Recent Direct Reaction Experimental Studies with Radioactive Tin Beams},
author = {Jones, K. L. and Ahn, S. and Allmond, J. M. and Ayres, A. and Bardayan, D. W. and Baugher, T. and Bazin, D. and Berryman, J. S. and Bey, A. and Bingham, C. and Cartegni, L. and Cerizza, G. and Chae, K. Y. and Cizewski, J. A. and Gade, A. and Galindo-Uribarri, A. and Garcia-Ruiz, R. F. and Grzywacz, R. and Howard, M. E. and Kozub, R. L. and Liang, J. F. and Manning, B. and Mato?, M. and McDaniel, S. and Miller, D. and Nesaraja, C. D. and O'Malley, P. D. and Padgett, S. and Padilla-Rodal, E. and Pain, S. D. and Pittman, S. T. and Radford, D. C. and Ratkiewicz, A. and Schmitt, K. T. and Shore, A. and Smith, M. S. and Stracener, D. W. and Stroberg, S. R. and Tostevin, J. and Varner, R. L. and Weisshaar, D. and Wimmer, K. and Winkler, R.},
abstractNote = {Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, N = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn-106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.},
doi = {10.5506/APhysPolB.46.537},
journal = {Acta Physica Polonica. Series B},
number = 3,
volume = 46,
place = {United States},
year = {Sun Mar 01 00:00:00 EST 2015},
month = {Sun Mar 01 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referencing / citing this record:

Reverse engineering nuclear properties from rare earth abundances in the r process
journal, February 2017

  • Mumpower, M. R.; McLaughlin, G. C.; Surman, R.
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 44, Issue 3
  • DOI: 10.1088/1361-6471/44/3/034003

Reverse engineering nuclear properties from rare earth abundances in the $r$ process
text, January 2016