skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancement of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet

Abstract

Here, we investigate the formation of a laser-produced magnetized jet under conditions of a varying mass ejection rate and a varying divergence of the ejected plasma flow. This is done by irradiating a solid target placed in a 20 T magnetic field with, first, a collinear precursor laser pulse (10 12 W/cm 2) and, then, a main pulse (10 13 W/cm 2) arriving 9–19 ns later. Varying the time delay between the two pulses is found to control the divergence of the expanding plasma, which is shown to increase the strength of and heating in the conical shock that is responsible for jet collimation. These results show that plasma collimation due to shocks against a strong magnetic field can lead to stable, astrophysically relevant jets that are sustained over time scales 100 times the laser pulse duration (i.e., >70 ns), even in the case of strong variability at the source.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [3];  [8];  [9];  [6];  [10];  [8];  [4];  [11];  [12];  [13];  [14];  [8];  [7] more »;  [7];  [15];  [5];  [2];  [3] « less
  1. Ecole Polytechnique Univ. Paris-Saclay, Sorbonne Univ., Palaiseau Cedex (France); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Sorbonne Univ., Paris (France); PSL Research Univ., Paris (France)
  3. Ecole Polytechnique Univ. Paris-Saclay, Sorbonne Univ., Palaiseau Cedex (France); Institute of Applied Physics, Nizhny Novgorod (Russia)
  4. CNRS-UGA-UPS-INSA, Toulouse (France)
  5. Heinrich-Heine-Univ. Dusseldorf, Dusseldorf (Germany)
  6. Queen's Univ. Belfast, Belfast (United Kingdom)
  7. Institute of Applied Physics, Nizhny Novgorod (Russia)
  8. Joint Institute for High Temperatures, Moscow (Russia); National Research Nuclear Univ. "MEPhl", Moscow (Russia)
  9. GSI Helmholtzzentrum fur Schweionenforschung GmbH, Darmstadt (Germany)
  10. INRS-EMT, Varennes, QC (Canada)
  11. Sorbonne Univ.-UPMC Univ. Paris 06, Ecole Polytechnique, Paris (France)
  12. Ecole Polytechnique Univ. Paris-Saclay, Sorbonne Univ., Palaiseau Cedex (France); CEA, DAM, DIF, Arpajon (France)
  13. Dept. de Fisica de a Univ. de Las Palmas de Gran Canaria, Paris (France)
  14. Joint Institute for High Temperatures, Moscow (Russia); M.V. Lomonosov Moscow State Univ., Moscow (Russia)
  15. Ecole Polytechnique Univ. Paris-Saclay, Sorbonne Univ., Palaiseau Cedex (France)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1438720
Alternate Identifier(s):
OSTI ID: 1414611
Report Number(s):
LLNL-JRNL-733609
Journal ID: ISSN 0031-9007; PRLTAO; TRN: US1900501
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 119; Journal Issue: 25; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION

Citation Formats

Higginson, D. P., Khiar, B., Revet, G., Beard, J., Blecher, M., Borghesi, M., Burdonov, K., Chen, S. N., Filippov, E., Khaghani, D., Naughton, K., Pepin, H., Pikuz, S., Portugall, O., Riconda, C., Riquier, R., Rodriguez, R., Ryazantsev, S. N., Skobelev, I. Yu., Soloviev, A., Starodubtsev, M., Vinci, T., Willi, O., Ciardi, A., and Fuchs, J. Enhancement of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet. United States: N. p., 2017. Web. doi:10.1103/PhysRevLett.119.255002.
Higginson, D. P., Khiar, B., Revet, G., Beard, J., Blecher, M., Borghesi, M., Burdonov, K., Chen, S. N., Filippov, E., Khaghani, D., Naughton, K., Pepin, H., Pikuz, S., Portugall, O., Riconda, C., Riquier, R., Rodriguez, R., Ryazantsev, S. N., Skobelev, I. Yu., Soloviev, A., Starodubtsev, M., Vinci, T., Willi, O., Ciardi, A., & Fuchs, J. Enhancement of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet. United States. doi:10.1103/PhysRevLett.119.255002.
Higginson, D. P., Khiar, B., Revet, G., Beard, J., Blecher, M., Borghesi, M., Burdonov, K., Chen, S. N., Filippov, E., Khaghani, D., Naughton, K., Pepin, H., Pikuz, S., Portugall, O., Riconda, C., Riquier, R., Rodriguez, R., Ryazantsev, S. N., Skobelev, I. Yu., Soloviev, A., Starodubtsev, M., Vinci, T., Willi, O., Ciardi, A., and Fuchs, J. Fri . "Enhancement of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet". United States. doi:10.1103/PhysRevLett.119.255002. https://www.osti.gov/servlets/purl/1438720.
@article{osti_1438720,
title = {Enhancement of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet},
author = {Higginson, D. P. and Khiar, B. and Revet, G. and Beard, J. and Blecher, M. and Borghesi, M. and Burdonov, K. and Chen, S. N. and Filippov, E. and Khaghani, D. and Naughton, K. and Pepin, H. and Pikuz, S. and Portugall, O. and Riconda, C. and Riquier, R. and Rodriguez, R. and Ryazantsev, S. N. and Skobelev, I. Yu. and Soloviev, A. and Starodubtsev, M. and Vinci, T. and Willi, O. and Ciardi, A. and Fuchs, J.},
abstractNote = {Here, we investigate the formation of a laser-produced magnetized jet under conditions of a varying mass ejection rate and a varying divergence of the ejected plasma flow. This is done by irradiating a solid target placed in a 20 T magnetic field with, first, a collinear precursor laser pulse (1012 W/cm2) and, then, a main pulse (1013 W/cm2) arriving 9–19 ns later. Varying the time delay between the two pulses is found to control the divergence of the expanding plasma, which is shown to increase the strength of and heating in the conical shock that is responsible for jet collimation. These results show that plasma collimation due to shocks against a strong magnetic field can lead to stable, astrophysically relevant jets that are sustained over time scales 100 times the laser pulse duration (i.e., >70 ns), even in the case of strong variability at the source.},
doi = {10.1103/PhysRevLett.119.255002},
journal = {Physical Review Letters},
number = 25,
volume = 119,
place = {United States},
year = {2017},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Schematic of the experimental setup and 3D MHD simulations of the overall plasma dynamics. The volume rendering shows the simulated mass density at 22 ns, for the case of a single 17 J pulse, with 1/4 of the volume removed to show the internal flow structure. Two co-linearmore » laser pulses (3/17 J), that are temporally-offset by either 9 or 19 ns, irradiate a (C2F4)n target embedded in a 20 T magnetic field. The diagnostic observation axis is also shown.« less

Save / Share:

Works referenced in this record:

Transformation of Observed Radiances into Radial Distribution of the Emission of a Plasma*
journal, January 1961


Modeling Extragalactic jets
journal, September 1998


Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory
journal, July 2017


X‐Rays from the Vicinity of the Protostar L1551 IRS 5: Reflection or Fast Shocks?
journal, February 2003

  • Bally, John; Feigelson, Eric; Reipurth, Bo
  • The Astrophysical Journal, Vol. 584, Issue 2
  • DOI: 10.1086/345850

Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
journal, July 2011


Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression
journal, September 1984


Magnetic Fields in Astrophysical Jets: From Launch to Termination
journal, June 2012

  • Pudritz, Ralph E.; Hardcastle, Martin J.; Gabuzda, Denise C.
  • Space Science Reviews, Vol. 169, Issue 1-4
  • DOI: 10.1007/s11214-012-9895-z

Critical Magnetic Field Strength for Suppression of the Richtmyer-Meshkov Instability in Plasmas
journal, November 2013


Laboratory unraveling of matter accretion in young stars
journal, November 2017

  • Revet, Guilhem; Chen, Sophia N.; Bonito, Rosaria
  • Science Advances, Vol. 3, Issue 11
  • DOI: 10.1126/sciadv.1700982

Radiative Jet Experiments of Astrophysical Interest Using Intense Lasers
journal, September 1999


Plasma jets produced in a single laser beam interaction with a planar target
journal, June 2006

  • Nicolaï, Ph.; Tikhonchuk, V. T.; Kasperczuk, A.
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2206171

Fluid and kinetic simulation of inertial confinement fusion plasmas
journal, July 2005


Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility
journal, December 2015


Discovery of X-ray emission from the protostellar jet L1551 IRS5 (HH 154)
journal, April 2002


The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas
journal, May 2013

  • Srinivasan, Bhuvana; Tang, Xian-Zhu
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803092

Astrophysics of Magnetically Collimated Jets Generated from Laser-Produced Plasmas
journal, January 2013


Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle
journal, June 2017


Experimental Demonstration of an Inertial Collimation Mechanism in Nested Outflows
journal, April 2014


Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field
journal, October 2014


Stable dense plasma jets produced at laser power densities around 1014W∕cm2
journal, June 2006

  • Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2208087

Use of external magnetic fields in hohlraum plasmas to improve laser-coupling
journal, January 2015

  • Montgomery, D. S.; Albright, B. J.; Barnak, D. H.
  • Physics of Plasmas, Vol. 22, Issue 1
  • DOI: 10.1063/1.4906055

High-Gain Magnetized Inertial Fusion
journal, January 2012


X-ray spectroscopy diagnostics of a recombining plasma in laboratory astrophysics studies
journal, December 2015


X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches
journal, November 2004

  • Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.
  • Plasma Physics and Controlled Fusion, Vol. 46, Issue 12B
  • DOI: 10.1088/0741-3335/46/12B/039

Diagnostics of laser-produced plasmas based on the analysis of intensity ratios of He-like ions X-ray emission
journal, December 2016

  • Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.
  • Physics of Plasmas, Vol. 23, Issue 12
  • DOI: 10.1063/1.4971805

Herbig-Haro Flows: Probes of Early Stellar Evolution
journal, September 2001


The evolution of magnetic tower jets in the laboratory
journal, May 2007

  • Ciardi, A.; Lebedev, S. V.; Frank, A.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2436479

Formation of X-ray emitting stationary shocks in magnetized protostellar jets
journal, December 2016


Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
journal, July 2013

  • Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816813

Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields
journal, April 2013

  • Albertazzi, B.; Béard, J.; Ciardi, A.
  • Review of Scientific Instruments, Vol. 84, Issue 4
  • DOI: 10.1063/1.4795551

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.