DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A broadband proton backlighting platform to probe shock propagation in low-density systems

Abstract

Here, a proton backlighting platform has been developed for the study of strong shock propagation in low-density systems in planar geometry. Electric fields at the converging shock front in inertial confinement fusion implosions have been previously observed, demonstrating the presence of—and the need to understand—strong electric fields not modeled in standard radiation-hydrodynamic simulations. In this planar configuration, long-pulse ultraviolet lasers are used to drive a strong shock into a gas-cell target, while a short-pulse proton backlighter side-on radiographs the shock propagation. The capabilities of the platform are presented here. Future experiments will vary shock strength and gas fill, to probe shock conditions at different Z and Te.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [2];  [2]; ORCiD logo [3];  [1]; ORCiD logo [1];  [3]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
  2. Univ. of California, San Diego, CA (United States). Center for Energy Research
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1348908
Alternate Identifier(s):
OSTI ID: 1348909; OSTI ID: 1438717
Report Number(s):
LLNL-JRNL-740687; LLNL-JRNL-684299
Journal ID: ISSN 0034-6748; TRN: US1700970
Grant/Contract Number:  
NA0002949; AC52-07NA27344; FA9550-14-1-0346; FC52-08NA28752; NA0002726
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 88; Journal Issue: 1; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Protons; Radiography; Electric fields; Helium-4; Spatial resolution; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 70 PLASMA PHYSICS AND FUSION

Citation Formats

Sio, H., Hua, R., Ping, Y., McGuffey, C., Beg, F., Heeter, R., Li, C. K., Petrasso, R. D., and Collins, G. W. A broadband proton backlighting platform to probe shock propagation in low-density systems. United States: N. p., 2017. Web. doi:10.1063/1.4973893.
Sio, H., Hua, R., Ping, Y., McGuffey, C., Beg, F., Heeter, R., Li, C. K., Petrasso, R. D., & Collins, G. W. A broadband proton backlighting platform to probe shock propagation in low-density systems. United States. https://doi.org/10.1063/1.4973893
Sio, H., Hua, R., Ping, Y., McGuffey, C., Beg, F., Heeter, R., Li, C. K., Petrasso, R. D., and Collins, G. W. Tue . "A broadband proton backlighting platform to probe shock propagation in low-density systems". United States. https://doi.org/10.1063/1.4973893. https://www.osti.gov/servlets/purl/1348908.
@article{osti_1348908,
title = {A broadband proton backlighting platform to probe shock propagation in low-density systems},
author = {Sio, H. and Hua, R. and Ping, Y. and McGuffey, C. and Beg, F. and Heeter, R. and Li, C. K. and Petrasso, R. D. and Collins, G. W.},
abstractNote = {Here, a proton backlighting platform has been developed for the study of strong shock propagation in low-density systems in planar geometry. Electric fields at the converging shock front in inertial confinement fusion implosions have been previously observed, demonstrating the presence of—and the need to understand—strong electric fields not modeled in standard radiation-hydrodynamic simulations. In this planar configuration, long-pulse ultraviolet lasers are used to drive a strong shock into a gas-cell target, while a short-pulse proton backlighter side-on radiographs the shock propagation. The capabilities of the platform are presented here. Future experiments will vary shock strength and gas fill, to probe shock conditions at different Z and Te.},
doi = {10.1063/1.4973893},
journal = {Review of Scientific Instruments},
number = 1,
volume = 88,
place = {United States},
year = {Tue Jan 17 00:00:00 EST 2017},
month = {Tue Jan 17 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: In the experimental configuration, a) up to three long-pulse UV lasers drive a strong shock through a CH ablator which unloads into a gas region. At different delays after the main laser drive, a short pulse laser irradiates a side-on proton backlighter for radiography. The short-pulse proton backlightermore » is placed 8 mm away from the center of the gas cell, and the RCF film pack can be placed 8 cm to 20 cm away from the gas cell for different magnifications. Figure 1b shows a CAD model of the gas cell target, as seen by the proton backlighter. Figure 1c is an example proton radiograph of the shock front as imaged by ~ 13 MeV protons, at t = 4.2 ns after the main drive lasers turned on for OMEGA EP shot 21793. Figure 1d is a zoomed lineout of the shock front region, with the valley and the peak in proton fluence corresponding to the ablator region and the shock-front region, respectively. The red lineout is a lineout of the 13 MeV proton radiograph in Fig 1c. The blue lineout is a lineout of the 8 MeV proton radiograph (not shown) on the same shot. The two lineouts are scaled to each other to better show differences in the widths and deflections.« less

Save / Share:

Works referenced in this record:

Thermo-diffusion in inertially confined plasmas
journal, April 2014


Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
journal, November 2004

  • Celliers, P. M.; Bradley, D. K.; Collins, G. W.
  • Review of Scientific Instruments, Vol. 75, Issue 11
  • DOI: 10.1063/1.1807008

Tests of the hydrodynamic equivalence of direct-drive implosions with different D2 and He3 mixtures
journal, May 2006

  • Rygg, J. R.; Frenje, J. A.; Li, C. K.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2192759

Some practical remarks on multiple scattering
journal, November 1975


Using high-intensity laser-generated energetic protons to radiograph directly driven implosions
journal, January 2012

  • Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.
  • Review of Scientific Instruments, Vol. 83, Issue 1
  • DOI: 10.1063/1.3680110

A role for electron viscosity in plasma shock heating
journal, October 2001

  • Velikovich, A. L.; Whitney, K. G.; Thornhill, J. W.
  • Physics of Plasmas, Vol. 8, Issue 10
  • DOI: 10.1063/1.1400126

Electric field and ionization-gradient effects on inertial-confinement-fusion implosions
journal, November 2009


Evidence for Stratification of Deuterium-Tritium Fuel in Inertial Confinement Fusion Implosions
journal, February 2012


Kinetic simulations of fuel ion transport in ICF target implosions
journal, November 2003

  • Larroche, O.
  • The European Physical Journal D - Atomic, Molecular and Optical Physics, Vol. 27, Issue 2
  • DOI: 10.1140/epjd/e2003-00251-1

Species separation and kinetic effects in collisional plasma shocks
journal, May 2014

  • Bellei, C.; Rinderknecht, H.; Zylstra, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876614

Electro-diffusion in a plasma with two ion species
journal, August 2012

  • Kagan, Grigory; Tang, Xian-Zhu
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4745869

Species separation in inertial confinement fusion fuels
journal, January 2013

  • Bellei, C.; Amendt, P. A.; Wilks, S. C.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4773291

Structure of a Plasma Shock Wave
journal, January 1964

  • Jaffrin, Michel Y.; Probstein, Ronald F.
  • Physics of Fluids, Vol. 7, Issue 10
  • DOI: 10.1063/1.1711072

Proton radiography as an electromagnetic field and density perturbation diagnostic (invited)
journal, October 2004

  • Mackinnon, A. J.; Patel, P. K.; Town, R. P.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1788893

Species separation and modification of neutron diagnostics in inertial-confinement fusion
journal, September 2014


Energetic ions generated by laser pulses: A detailed study on target properties
journal, June 2002

  • Roth, M.; Blazevic, A.; Geissel, M.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 5, Issue 6
  • DOI: 10.1103/PhysRevSTAB.5.061301

The instabilities induced by electrostatic fields and gradients in a plasma shock front
journal, January 2008

  • He, Yong; Hu, Xiwei; Jiang, Zhonghe
  • Physics of Plasmas, Vol. 15, Issue 1
  • DOI: 10.1063/1.2834726

Influence of kinetic effects on the structure of an ion shock wave in a plasma
journal, March 2000

  • Smirnovskii, I. R.
  • Plasma Physics Reports, Vol. 26, Issue 3
  • DOI: 10.1134/1.952842

Anomalous yield reduction in direct-drive deuterium/tritium implosions due to H3e addition
journal, May 2009

  • Herrmann, H. W.; Langenbrunner, J. R.; Mack, J. M.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3141062

Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions
journal, January 2015


Implementation of an non-iterative implicit electromagnetic field solver for dense plasma simulation
journal, December 2004

  • Welch, D. R.; Rose, D. V.; Clark, R. E.
  • Computer Physics Communications, Vol. 164, Issue 1-3
  • DOI: 10.1016/j.cpc.2004.06.028

Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures
journal, September 2010


Proton Radiography of Inertial Fusion Implosions
journal, February 2008


High-Energy Petawatt Capability for the Omega Laser
journal, January 2005

  • Waxer, L. J.; Maywar, D. N.; Kelly, J. H.
  • Optics and Photonics News, Vol. 16, Issue 7
  • DOI: 10.1364/OPN.16.7.000030

Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions
journal, May 2015

  • Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921130

Proton radiography of a shock-compressed target
journal, July 2010


HYADES—A plasma hydrodynamics code for dense plasma studies
journal, January 1994

  • Larsen, Jon T.; Lane, Stephen M.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 51, Issue 1-2
  • DOI: 10.1016/0022-4073(94)90078-7

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Works referencing / citing this record:

Fuel-ion diffusion in shock-driven inertial confinement fusion implosions
journal, September 2019

  • Sio, Hong; Li, Chikang; Parker, Cody E.
  • Matter and Radiation at Extremes, Vol. 4, Issue 5
  • DOI: 10.1063/1.5090783

Kinetic physics in ICF: present understanding and future directions
journal, April 2018

  • Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 6
  • DOI: 10.1088/1361-6587/aab79f

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.