FELIX-2.0: New version of the finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation
- Univ. Paris-Sud, Orsay (France). Inst. of Nuclear Physics. IN2P3-CNRS
- Alternative Energies and Atomic Energy Commission (CEA), Arpajon (France)
- Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Nuclear and Chemical Science Division
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different types of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Univ. Paris-Sud, Orsay (France)
- Sponsoring Organization:
- USDOE Office of Science (SC); USDOE
- Grant/Contract Number:
- AC52-07NA27344; AC05-00OR22725; AC02-05CH11231
- OSTI ID:
- 1438682
- Alternate ID(s):
- OSTI ID: 1548986
- Report Number(s):
- LLNL-JRNL-735217; TRN: US1900485
- Journal Information:
- Computer Physics Communications, Vol. 225; ISSN 0010-4655
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation
From asymmetric to symmetric fission in the fermium isotopes within the time-dependent generator-coordinate-method formalism