DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Plasmas Cooled by Cyclotron-Cavity Resonance

Abstract

We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of 10 or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.

Authors:
 [1];  [2];  [3];  [4];  [3];  [4];  [3];  [5];  [6];  [3];  [3];  [6];  [3]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States). Dept. of Physics
  2. Beloit College, WI (United States). Dept. of Physics and Astronomy
  3. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  4. Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Physics and Astronomy
  5. Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Chemistry
  6. Purdue Univ., West Lafayette, IN (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Purdue Univ., West Lafayette, IN (United States); Univ. of British Columbia, Vancouver, BC (Canada)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); National Science Foundation (NSF); Natural Sciences and Engineering Research Council of Canada (NSERC)
OSTI Identifier:
1438653
Alternate Identifier(s):
OSTI ID: 1329515
Report Number(s):
LLNL-JRNL-693077
Journal ID: ISSN 0031-9007; TRN: US1900476
Grant/Contract Number:  
AC52-07NA27344; FG02-06ER54904; SC0014446; 1500538-PHY; 1500470-PHY; SAPPJ-2014-0026
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 117; Journal Issue: 17; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; exotic atoms & molecules; nonneutral plasmas; single-component plasmas; Penning traps

Citation Formats

Povilus, A. P., DeTal, N. D., Evans, L. T., Evetts, N., Fajans, J., Hardy, W. N., Hunter, E. D., Martens, I., Robicheaux, F., Shanman, S., So, C., Wang, X., and Wurtele, J. S. Electron Plasmas Cooled by Cyclotron-Cavity Resonance. United States: N. p., 2016. Web. doi:10.1103/PhysRevLett.117.175001.
Povilus, A. P., DeTal, N. D., Evans, L. T., Evetts, N., Fajans, J., Hardy, W. N., Hunter, E. D., Martens, I., Robicheaux, F., Shanman, S., So, C., Wang, X., & Wurtele, J. S. Electron Plasmas Cooled by Cyclotron-Cavity Resonance. United States. https://doi.org/10.1103/PhysRevLett.117.175001
Povilus, A. P., DeTal, N. D., Evans, L. T., Evetts, N., Fajans, J., Hardy, W. N., Hunter, E. D., Martens, I., Robicheaux, F., Shanman, S., So, C., Wang, X., and Wurtele, J. S. Fri . "Electron Plasmas Cooled by Cyclotron-Cavity Resonance". United States. https://doi.org/10.1103/PhysRevLett.117.175001. https://www.osti.gov/servlets/purl/1438653.
@article{osti_1438653,
title = {Electron Plasmas Cooled by Cyclotron-Cavity Resonance},
author = {Povilus, A. P. and DeTal, N. D. and Evans, L. T. and Evetts, N. and Fajans, J. and Hardy, W. N. and Hunter, E. D. and Martens, I. and Robicheaux, F. and Shanman, S. and So, C. and Wang, X. and Wurtele, J. S.},
abstractNote = {We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of 10 or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.},
doi = {10.1103/PhysRevLett.117.175001},
journal = {Physical Review Letters},
number = 17,
volume = 117,
place = {United States},
year = {Fri Oct 21 00:00:00 EDT 2016},
month = {Fri Oct 21 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Schematic of the experiment showing the electron gun, the microchannel plate (MCP), and the bulge cavity where modes are trapped. A “reservoir” of electrons (L ≈ 5 cm, N ≈ 108 e) and the test electrons (L ≈ 1 cm, N ≈ 105 e) are depicted inmore » blue. (b) The E cavity mode intensity patterns simulated by High-Frequency Structure Simulator, shown for two cavity modes in cross section. (c) Typical temperature measurement data (black) showing the plasma escaped charge as a function of the plasma confinement voltage, and the corresponding temperature fit (red).« less

Save / Share:

Works referenced in this record:

Parametrically pumped electron oscillators
journal, October 1993


Production and detection of cold antihydrogen atoms
journal, September 2002


Background-Free Observation of Cold Antihydrogen with Field-Ionization Analysis of Its States
journal, October 2002


Measurement of the Anisotropic Temperature Relaxation Rate in a Pure Electron Plasma
journal, December 1987


Plasma and trap-based techniques for science with positrons
journal, March 2015

  • Danielson, J. R.; Dubin, D. H. E.; Greaves, R. G.
  • Reviews of Modern Physics, Vol. 87, Issue 1
  • DOI: 10.1103/RevModPhys.87.247

Parallel energy analyzer for pure electron plasma devices
journal, October 1992

  • Eggleston, D. L.; Driscoll, C. F.; Beck, B. R.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 10
  • DOI: 10.1063/1.860399

Measurement of collisional anisotropic temperature relaxation in a strongly magnetized pure electron plasma
journal, January 1992


Inhibited Spontaneous Emission
journal, July 1981


Open microwave cavity for use in a Purcell enhancement cooling scheme
journal, October 2016

  • Evetts, N.; Martens, I.; Bizzotto, D.
  • Review of Scientific Instruments, Vol. 87, Issue 10
  • DOI: 10.1063/1.4963856

Inhibited Spontaneous Emission in Solid-State Physics and Electronics
journal, May 1987


Cooling and slowing of trapped antiprotons below 100 meV
journal, September 1989


Controlling spin relaxation with a cavity
journal, February 2016


Observation of inhibited spontaneous emission
journal, July 1985


Experiments with pure electron plasmas
conference, January 1988

  • Malmberg, J. H.; Driscoll, C. F.; Beck, B.
  • AIP Conference Proceedings Volume 175
  • DOI: 10.1063/1.37613

Properties of Nonneutral Plasma
journal, September 1975


Cooling of a pure electron plasma by cyclotron radiation
journal, January 1980


Trapped antihydrogen
journal, November 2010

  • Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.
  • Nature, Vol. 468, Issue 7324
  • DOI: 10.1038/nature09610

Works referencing / citing this record:

Low magnetic field cooling of lepton plasmas via cyclotron-cavity resonance
journal, January 2018

  • Hunter, E. D.; Evetts, N.; Fajans, J.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.5006700

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.